Development of a Micro-forming System for Micro-extrusion Process of Micro-pin in AZ80 Alloy

Author(s):  
D. Rajenthirakumar ◽  
N. Srinivasan ◽  
R. Sridhar
Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1209
Author(s):  
Linhong Xu ◽  
Yulan Lei ◽  
Haiou Zhang ◽  
Zhaochen Zhang ◽  
Yuchu Sheng ◽  
...  

As an effective method for the fabrication of miniature metallic parts, the development of micro-forming process (MFP) is still restricted by the existence of size effect. To improve the micro-forming performance of metal material, ultrasonic vibration assisted MFP had been studied extensively for its superiorities in improving materials flow stress and reducing interfacial friction. However, from the literature available, the high frequency vibration was usually found to be superimposed on the forming tool while seldom on the workpiece. Our group developed a special porous sonotrode platform which can realize tool vibration and workpiece ultrasonic vibration independently. In this work, ultrasonic micro-extrusion experiments for copper T2 material under tool vibration and the workpiece vibration condition, respectively, were conducted for comparing the micro-forming characteristic of different vibration modes. The micro-extrusion experiment results of copper T2 show that the lower extrusion flow stress, the higher micro-extrusion formability and surface micro-hardness, and more obvious grain refinement phenomenon can be obtained under the workpiece vibration condition compared with that of tool vibration. These findings may enhance our understanding on different ultrasonic forming mechanisms and energy transmission efficiency under two different vibration modes.


Author(s):  
Md Mosleh Uddin ◽  
Debabrata Mondal ◽  
Paul D. Herrington

The growing demand of miniaturized products is tremendously influencing the progress of micro-forming technologies. The implementations of micro technologies in the field of microelectronics, sensors, and medical equipment necessitate versatile micro-forming processes. These processes facilitate the bulk production of micro parts with higher precision, minimum material waste, and better surface finish. However, micro-forming technologies are still expensive due to the limitations of traditional materials and stringent size requirements. Finite element simulations are being widely used to analyze the manufacturing process parameters before going into production. In this research, a backward micro-extrusion process is simulated for annealed copper by using commercial Finite element simulation software. The effects of different punch diameters, friction coefficients, punch velocities on the load-displacement curves and the resulting strain distributions are investigated. To overcome limitations of the post-yield hardening data from the uniaxial compression test, the Ramberg-Osgood model is proposed to predict the responses at the higher plastic strain.


Author(s):  
Michael E. Rock ◽  
Vern Kennedy ◽  
Bhaskar Deodhar ◽  
Thomas G. Stoebe

Cellophane is a composite polymer material, made up of regenerated cellulose (usually derived from wood pulp) which has been chemically transformed into "viscose", then formed into a (1 mil thickness) transparent sheet through an extrusion process. Although primarily produced for the food industry, cellophane's use as a separator material in the silver-zinc secondary battery system has proved to be another important market. We examined 14 samples from five producers of cellophane, which are being evaluated as the separator material for a silver/zinc alkaline battery system in an autonomous underwater target vehicle. Our intent was to identify structural and/or chemical differences between samples which could be related to the functional differences seen in the lifetimes of these various battery separators. The unused cellophane samples were examined by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Cellophane samples were cross sectioned (125-150 nm) using a diamond knife on a RMC MT-6000 ultramicrotome. Sections were examined in a Philips 430-T TEM at 200 kV. Analysis included morphological characterization, and EDS (for chemical composition). EDS was performed using an EDAX windowless detector.


2013 ◽  
Vol 12 (3) ◽  
Author(s):  
Syamsul Rizal ◽  
Amin Suhandi

There are many attempts to support the development of industry in Indonesia, especially on automotive sector, one of them is by replacing import components with local component products. Bushing is one of imported component that widely used on automotive application including motor strater. Bushing usually made of  copper alloy such as brass, bronz or babbit in a solid form by casting or extrusion process. In this research powder metal technology is used to process Cu-Al powder to become slide bearing of motor starter. It is expected that powder metal process not only increasing local content in automotive parts but also providing better quality by increasing life time of bushing compared to ordinary one. Cu-Al metal powder was compacted at various pressure, i.e: 250 MPa, 350 MPa and 450 MPa, and then all specimens were sintered at different temperatures : 4000C, 5000C dan 6000C for 1 hour.  After sintering specimens were air cooled to room temperature. After physical and mechanical test it can be deduced that bushing made by powder metallurgy method could increase its mechanical properties and as aresult improve its life time operation.  


Author(s):  
Natalia Prodiana Setiawati ◽  
Joko Santoso ◽  
Sri Purwaningsih

The utilization of local food commodities such as corn and cassava with seaweed addition as a dietary fiber source for producing artificial rice through extrusion technology is an  alternative for food diversification. The research was carried out to find out the best composition (rice, corn, cassava, and seaweed) and temperature of extrusion process on making artificial rice and the influence of dietary fibre on sensory properties and physicochemical. The composition of rice, corn, and cassava in proportion  of 1:3:1 with 20% seaweed, Eucheuma cottonii, addition and temperature extruder of 90 °C were selected as the best product for artificial rice. The  sensory evaluation was 8.02±0.21 (people’s preference). In physicochemical properties, dietary fiber significantly affected on low bulk density and starch digestibility. This condition is very good for health especially in maintaining the stability of blood glucose in the body. Keywords: artificial rice, composition, extrusion, seaweed, dietary fibre, temperature


Author(s):  
E. M. Ratnikov ◽  
D. O. Milko

Annotation Purpose. Development of a program and methods for conducting experimental studies of the extrusion process with the definition of parameters and modes of operation of the extruder to improve its energy performance. Methods. Methods of mathematical statistics, synthesis, analysis, description and modeling were used. Results. The application of mathematical methods, in particular mathematical planning, reduces the number of experiments several times, and allows to evaluate the role of influencing factors, obtain a mathematical model of the process and determine the optimal conditions for its parameters and modes, etc. Conclusions. The methodology for experimental studies of a screw extruder is presented with the necessary equipment and methodology for processing the obtained experimental data. A mathematical method of planning, which reduces the number of experiments several times, allows us to evaluate the role of factors affecting productivity and energy intensity is presented. Keywords: extruder, auger, nutrients, research methodology, extrusion, processing, feed.


2016 ◽  
Vol 45 (12) ◽  
pp. 1769-1775 ◽  
Author(s):  
Nak-Yun Sung ◽  
Woo-Young Park ◽  
Yi-Eun Kim ◽  
Eun-Ji Cho ◽  
Hayeon Song ◽  
...  

Author(s):  
Gomes Acg ◽  
Lima Mcpm ◽  
Caliari M ◽  
Alves Dg ◽  
Machado Alb ◽  
...  

Due to the technological importance that the extrusion process represents in the application of fast food, the objective of this work was to apply pregelatinized rice and sorghum flours in the development of an instant preparation soup and to evaluate its centesimal, technological, and their sensorial analysis. Ten formulations of the instant soup were prepared from the mixtures experimental design. According to the experimental results, it can be stated that the predicted values corroborated with the experimental values, that is, a mixture was obtained for the instant soup with the characteristics of water absorption, water solubility, color, luminosity and viscosity close to the predicted by the models. After the physical and chemical analysis, the microbiological characterization of the best formulation defined by the desirability test was used, which demonstrated that the product is suitable to microbiological standards. The results obtained showed that the 80:10:10 instant soup formulation of pregelatinized rice flour, pregelatinized sorghum flour and potato starch allowed the experimental development of a new product with good nutritional characteristics benefits. It was obtained a food with good technological characteristics solubility and absorption in water, good viscosity, light color and with good sensory acceptance by the tasters.


Sign in / Sign up

Export Citation Format

Share Document