Modular Serial Robot Dynamics

2021 ◽  
pp. 77-92
Author(s):  
Guilin Yang ◽  
I-Ming Chen
Keyword(s):  
2021 ◽  
Vol 11 (9) ◽  
pp. 4303
Author(s):  
Quentin Leboutet ◽  
Julien Roux ◽  
Alexandre Janot ◽  
Julio Rogelio Guadarrama-Olvera ◽  
Gordon Cheng

This work aims at reviewing, analyzing and comparing a range of state-of-the-art approaches to inertial parameter identification in the context of robotics. We introduce “BIRDy (Benchmark for Identification of Robot Dynamics)”, an open-source Matlab toolbox, allowing a systematic and formal performance assessment of the considered identification algorithms on either simulated or real serial robot manipulators. Seventeen of the most widely used approaches found in the scientific literature are implemented and compared to each other, namely: the Inverse Dynamic Identification Model with Ordinary, Weighted, Iteratively Reweighted and Total Least-Squares (IDIM-OLS, -WLS, -IRLS, -TLS); the Instrumental Variables method (IDIM-IV), the Maximum Likelihood (ML) method; the Direct and Inverse Dynamic Identification Model approach (DIDIM); the Closed-Loop Output Error (CLOE) method; the Closed-Loop Input Error (CLIE) method; the Direct Dynamic Identification Model with Nonlinear Kalman Filtering (DDIM-NKF), the Adaline Neural Network (AdaNN), the Hopfield-Tank Recurrent Neural Network (HTRNN) and eventually a set of Physically Consistent (PC-) methods allowing the enforcement of parameter physicality using Semi-Definite Programming, namely the PC-IDIM-OLS, -WLS, -IRLS, PC-IDIM-IV, and PC-DIDIM. BIRDy is robot-agnostic and features a complete inertial parameter identification pipeline, from the generation of symbolic kinematic and dynamic models to the identification process itself. This includes functionalities for excitation trajectory computation as well as the collection and pre-processing of experiment data. In this work, the proposed methods are first evaluated in simulation, following a Monte Carlo scheme on models of the 6-DoF TX40 and RV2SQ industrial manipulators, before being tested on the real robot platforms. The robustness, precision, computational efficiency and context of application the different methods are investigated and discussed.


2002 ◽  
Vol 37 (8) ◽  
pp. 739-755 ◽  
Author(s):  
V. Mata ◽  
S. Provenzano ◽  
F. Valero ◽  
J.I. Cuadrado

Author(s):  
James K. Hopkins ◽  
Satyandra K. Gupta

Snake-inspired locomotion is much more maneuverable compared to conventional locomotion concepts and it enables a robot to navigate through rough terrain. A rectilinear gait is quite flexible and has the following benefits: functionality on a wide variety of terrains, enables a highly stable robot platform, and provides pure undulatory motion without passive wheels. These benefits make rectilinear gaits especially suitable for search and rescue applications. However, previous robot designs utilizing rectilinear gaits were slow in speed. This paper introduces a new class of rectilinear gaits to be utilized by a snake-inspired robot design which is capable of pure linear motion and variable traction. The general model for the gait class is based on serial robot dynamics using the Lagrangian formulation. The gait class includes four unique gaits: a forward and a turning gait, which both emphasize speed for the robot; and a forward and turning gait which emphasize traction. Also, we perform an analysis of the variable traction concept.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1522
Author(s):  
Fuli Zhang ◽  
Zhaohui Yuan

The flexible manipulato is widely used in the aerospace industry and various other special fields. Control accuracy is affected by the flexibility, joint friction, and terminal load. Therefore, this paper establishes a robot dynamics model under the coupling effect of flexibility, friction, and terminal load, and analyzes and studies its control. First of all, taking the structure of the central rigid body, the flexible beam, and load as the research object, the dynamic model of a flexible manipulator with terminal load is established by using the hypothesis mode and the Lagrange method. Based on the balance principle of the force and moment, the friction under the influence of flexibility and load is recalculated, and the dynamic model of the manipulator is further improved. Secondly, the coupled dynamic system is decomposed and the controller is designed by the multivariable feedback controller. Finally, using MATLAB as the simulation platform, the feasibility of dynamic simulation is verified through simulation comparison. The results show that the vibration amplitude can be reduced with the increase of friction coefficient. As the load increases, the vibration can increase further. The trajectory tracking and vibration suppression of the manipulator are effective under the control method of multi-feedback moment calculation. The research is of great significance to the control of flexible robots under the influence of multiple factors.


Robotica ◽  
2021 ◽  
pp. 1-13
Author(s):  
Sibyla Andreuchetti ◽  
Vinícius M. Oliveira ◽  
Toshio Fukuda

SUMMARY Many different control schemes have been proposed in the technical literature to control the special class of underactuated systems, the- so-called brachiation robots. However, most of these schemes are limited with regard to the method by which the robot executes the brachiation movement. Moreover, many of these control strategies do not take into account the energy of the system as a decision variable. To observe the behavior of the system’s, energy is very important for a better understanding of the robot dynamics while performing the motion. This paper discusses a variety of energy-based strategies to better understand how the system’s energy may influence the type of motion (under-swing or overhand) the robot should perform.


2015 ◽  
Vol 772 ◽  
pp. 585-590
Author(s):  
Florin Gîrbacia ◽  
Silviu Butnariu ◽  
Daniel Voinea ◽  
Bogdan Tzolea ◽  
Teodora Gîrbacia ◽  
...  

Surgical robots for biopsy procedure require pre-operative planning of trajectories prior to be used for needle guiding procedures. Virtual Reality (VR) technologies allow to simulate robotic biopsy procedure and to generate accurate needle trajectories that avoid vital organs. The paper presents a serial robot which can be used for biopsy procedure and a needle trajectory planning software based on VR technologies. A virtual environment has been modelled and simulations for robotic-assisted biopsy of the prostate have been performed.


1988 ◽  
Vol 19 (10) ◽  
pp. 45-54
Author(s):  
Hironori Kasahara ◽  
Masahiko Iwata ◽  
Seinosuke Narita ◽  
Hirofumi Fujii

2018 ◽  
Vol 2018 ◽  
pp. 1-19
Author(s):  
Le Liang ◽  
Yanjie Liu ◽  
Hao Xu

Multiobjective trajectory optimization and adaptive backstepping control method based on recursive fuzzy wavelet neural network (RFWNN) are proposed to solve the problem of dynamic modeling uncertainties and strong external disturbance of the rubber unstacking robot during recycling process. First, according to the rubber viscoelastic properties, the Hunt-Crossley nonlinear model is used to construct the robot dynamics model. Then, combined with the dynamic model and the recycling process characteristics, the multiobjective trajectory optimization of the rubber unstacking robot is carried out for the operational efficiency, the running trajectory smoothness, and the energy consumption. Based on the trajectory optimization results, the adaptive backstepping control method based on RFWNN is adopted. The RFWNN method is applied in the main controller to cope with time-varying uncertainties of the robot dynamic system. Simultaneously, an adaptive robust control law is developed to eliminate inevitable approximation errors and unknown disturbances and relax the requirement for prior knowledge of the controlled system. Finally, the validity of the proposed control strategy is verified by experiment.


Author(s):  
Meiying Zhang ◽  
Thierry Laliberté ◽  
Clément Gosselin

This paper proposes the use of passive force and torque limiting devices to bound the maximum forces that can be applied at the end-effector or along the links of a robot, thereby ensuring the safety of human-robot interaction. Planar isotropic force limiting modules are proposed and used to analyze the force capabilities of a two-degree-of-freedom planar serial robot. The force capabilities at the end-effector are first analyzed. It is shown that, using isotropic force limiting modules, the performance to safety index remains excellent for all configurations of the robot. The maximum contact forces along the links of the robot are then analyzed. Force and torque limiters are distributed along the structure of the robot in order to ensure that the forces applied at any point of contact along the links are bounded. A power analysis is then presented in order to support the results. Finally, examples of mechanical designs of force/torque limiters are shown to illustrate a possible practical implementation of the concept.


Sign in / Sign up

Export Citation Format

Share Document