Core Flooding Studies Using Microbial Systems

2021 ◽  
pp. 221-241
Author(s):  
Poulami Datta ◽  
Sombir Pannu ◽  
Pankaj Tiwari ◽  
Lalit Pandey
Author(s):  
A. Koto

The objective of this paper is to determine the optimum anaerobic-thermophilic bacterium injection (Microbial Enhanced Oil Recovery) parameters using commercial simulator from core flooding experiments. From the previous experiment in the laboratory, Petrotoga sp AR80 microbe and yeast extract has been injected into core sample. The result show that the experiment with the treated microbe flooding has produced more oil than the experiment that treated by brine flooding. Moreover, this microbe classified into anaerobic thermophilic bacterium due to its ability to live in 80 degC and without oxygen. So, to find the optimum parameter that affect this microbe, the simulation experiment has been conducted. The simulator that is used is CMG – STAR 2015.10. There are five scenarios that have been made to forecast the performance of microbial flooding. Each of this scenario focus on the injection rate and shut in periods. In terms of the result, the best scenario on this research can yield an oil recovery up to 55.7%.


2000 ◽  
Vol 156 (4) ◽  
pp. S35
Author(s):  
Travisano ◽  
Rainey

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mathias Fink ◽  
Monika Cserjan-Puschmann ◽  
Daniela Reinisch ◽  
Gerald Striedner

AbstractTremendous advancements in cell and protein engineering methodologies and bioinformatics have led to a vast increase in bacterial production clones and recombinant protein variants to be screened and evaluated. Consequently, an urgent need exists for efficient high-throughput (HTP) screening approaches to improve the efficiency in early process development as a basis to speed-up all subsequent steps in the course of process design and engineering. In this study, we selected the BioLector micro-bioreactor (µ-bioreactor) system as an HTP cultivation platform to screen E. coli expression clones producing representative protein candidates for biopharmaceutical applications. We evaluated the extent to which generated clones and condition screening results were transferable and comparable to results from fully controlled bioreactor systems operated in fed-batch mode at moderate or high cell densities. Direct comparison of 22 different production clones showed great transferability. We observed the same growth and expression characteristics, and identical clone rankings except one host-Fab-leader combination. This outcome demonstrates the explanatory power of HTP µ-bioreactor data and the suitability of this platform as a screening tool in upstream development of microbial systems. Fast, reliable, and transferable screening data significantly reduce experiments in fully controlled bioreactor systems and accelerate process development at lower cost.


2021 ◽  
Vol 62 ◽  
pp. 68-75
Author(s):  
Giansimone Perrino ◽  
Andreas Hadjimitsis ◽  
Rodrigo Ledesma-Amaro ◽  
Guy-Bart Stan

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Laura Navone ◽  
Thomas Vogl ◽  
Pawarisa Luangthongkam ◽  
Jo-Anne Blinco ◽  
Carlos H. Luna-Flores ◽  
...  

Abstract Background Phytases are widely used commercially as dietary supplements for swine and poultry to increase the digestibility of phytic acid. Enzyme development has focused on increasing thermostability to withstand the high temperatures during industrial steam pelleting. Increasing thermostability often reduces activity at gut temperatures and there remains a demand for improved phyases for a growing market. Results In this work, we present a thermostable variant of the E. coli AppA phytase, ApV1, that contains an extra non-consecutive disulfide bond. Detailed biochemical characterisation of ApV1 showed similar activity to the wild type, with no statistical differences in kcat and KM for phytic acid or in the pH and temperature activity optima. Yet, it retained approximately 50% activity after incubations for 20 min at 65, 75 and 85 °C compared to almost full inactivation of the wild-type enzyme. Production of ApV1 in Pichia pastoris (Komagataella phaffi) was much lower than the wild-type enzyme due to the presence of the extra non-consecutive disulfide bond. Production bottlenecks were explored using bidirectional promoters for co-expression of folding chaperones. Co-expression of protein disulfide bond isomerase (Pdi) increased production of ApV1 by ~ 12-fold compared to expression without this folding catalyst and restored yields to similar levels seen with the wild-type enzyme. Conclusions Overall, the results show that protein engineering for enhanced enzymatic properties like thermostability may result in folding complexity and decreased production in microbial systems. Hence parallel development of improved production strains is imperative to achieve the desirable levels of recombinant protein for industrial processes.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 55-60
Author(s):  
Wenting Dong ◽  
Dong Zhang ◽  
Keliang Wang ◽  
Yue Qiu

AbstractPolymer flooding technology has shown satisfactorily acceptable performance in improving oil recovery from unconsolidated sandstone reservoirs. The adsorption of the polymer in the pore leads to the increase of injection pressure and the decrease of suction index, which affects the effect of polymer flooding. In this article, the water and oil content of polymer blockages, which are taken from Bohai Oilfield, are measured by weighing method. In addition, the synchronous thermal analyzer and Fourier transform infrared spectroscopy (FTIR) are used to evaluate the composition and functional groups of the blockage, respectively. Then the core flooding experiments are also utilized to assess the effect of polymer plugs on reservoir properties and optimize the best degradant formulation. The results of this investigation show that the polymer adsorption in core after polymer flooding is 0.0068 g, which results in a permeability damage rate of 74.8%. The degradation ability of the agent consisting of 1% oxidizer SA-HB and 10% HCl is the best, the viscosity of the system decreases from 501.7 to 468.5 mPa‧s.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhen Han ◽  
Peter S. Thuy-Boun ◽  
Wayne Pfeiffer ◽  
Vincent F. Vartabedian ◽  
Ali Torkamani ◽  
...  

AbstractN-Acetylneuraminic acid is the most abundant sialic acid (SA) in humans and is expressed as the terminal sugar on intestinal mucus glycans. Several pathogenic bacteria harvest and display host SA on their own surfaces to evade Siglec-mediated host immunity. While previous studies have identified bacterial enzymes associated with SA catabolism, no reported methods permit the selective labeling, tracking, and quantitation of SA-presenting microbes within complex multi-microbial systems. We combined metabolic labeling, click chemistry, 16S rRNA gene, and whole-genome sequencing to track and identify SA-presenting microbes from a cultured human fecal microbiome. We isolated a new strain of Escherichia coli that incorporates SA onto its own surface and encodes for the nanT, neuA, and neuS genes necessary for harvesting and presenting SA. Our method is applicable to the identification of SA-presenting bacteria from human, animal, and environmental microbiomes, as well as providing an entry point for the investigation of surface-expressed SA-associated structures.


2020 ◽  
Vol 57 ◽  
pp. vi-vii
Author(s):  
Athanasios (Nassos) Typas ◽  
Gene-Wei Li

Sign in / Sign up

Export Citation Format

Share Document