Visual Secret Share Creation with Grayscale Image Converted to RGB Images Using Zigzag Scanning Algorithm

Author(s):  
M. Karolin ◽  
T. Meyyappan
2019 ◽  
Vol 2019 (1) ◽  
pp. 95-98
Author(s):  
Hans Jakob Rivertz

In this paper we give a new method to find a grayscale image from a color image. The idea is that the structure tensors of the grayscale image and the color image should be as equal as possible. This is measured by the energy of the tensor differences. We deduce an Euler-Lagrange equation and a second variational inequality. The second variational inequality is remarkably simple in its form. Our equation does not involve several steps, such as finding a gradient first and then integrating it. We show that if a color image is at least two times continuous differentiable, the resulting grayscale image is not necessarily two times continuous differentiable.


Author(s):  
Bochang Zou ◽  
Huadong Qiu ◽  
Yufeng Lu

The detection of spherical targets in workpiece shape clustering and fruit classification tasks is challenging. Spherical targets produce low detection accuracy in complex fields, and single-feature processing cannot accurately recognize spheres. Therefore, a novel spherical descriptor (SD) for contour fitting and convex hull processing is proposed. The SD achieves image de-noising by combining flooding processing and morphological operations. The number of polygon-fitted edges is obtained by convex hull processing based on contour extraction and fitting, and two RGB images of the same group of objects are obtained from different directions. The two fitted edges of the same target object obtained at two RGB images are extracted to form a two-dimensional array. The target object is defined as a sphere if the two values of the array are greater than a custom threshold. The first classification result is obtained by an improved K-NN algorithm. Circle detection is then performed on the results using improved Hough circle detection. We abbreviate it as a new Hough transform sphere descriptor (HSD). Experiments demonstrate that recognition of spherical objects is obtained with 98.8% accuracy. Therefore, experimental results show that our method is compared with other latest methods, HSD has higher identification accuracy than other methods.


2021 ◽  
Vol 13 (11) ◽  
pp. 2045
Author(s):  
Anaí Caparó Bellido ◽  
Bradley C. Rundquist

Snow cover is an important variable in both climatological and hydrological studies because of its relationship to environmental energy and mass flux. However, variability in snow cover can confound satellite-based efforts to monitor vegetation phenology. This research explores the utility of the PhenoCam Network cameras to estimate Fractional Snow Cover (FSC) in grassland. The goal is to operationalize FSC estimates from PhenoCams to inform and improve the satellite-based determination of phenological metrics. The study site is the Oakville Prairie Biological Field Station, located near Grand Forks, North Dakota. We developed a semi-automated process to estimate FSC from PhenoCam images through Python coding. Compared with previous research employing RGB images only, our use of the monochrome RGB + NIR (near-infrared) reduced pixel misclassification and increased accuracy. The results had an average RMSE of less than 8% FSC compared to visual estimates. Our pixel-based accuracy assessment showed that the overall accuracy of the images selected for validation was 92%. This is a promising outcome, although not every PhenoCam Network system has NIR capability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christian Crouzet ◽  
Gwangjin Jeong ◽  
Rachel H. Chae ◽  
Krystal T. LoPresti ◽  
Cody E. Dunn ◽  
...  

AbstractCerebral microhemorrhages (CMHs) are associated with cerebrovascular disease, cognitive impairment, and normal aging. One method to study CMHs is to analyze histological sections (5–40 μm) stained with Prussian blue. Currently, users manually and subjectively identify and quantify Prussian blue-stained regions of interest, which is prone to inter-individual variability and can lead to significant delays in data analysis. To improve this labor-intensive process, we developed and compared three digital pathology approaches to identify and quantify CMHs from Prussian blue-stained brain sections: (1) ratiometric analysis of RGB pixel values, (2) phasor analysis of RGB images, and (3) deep learning using a mask region-based convolutional neural network. We applied these approaches to a preclinical mouse model of inflammation-induced CMHs. One-hundred CMHs were imaged using a 20 × objective and RGB color camera. To determine the ground truth, four users independently annotated Prussian blue-labeled CMHs. The deep learning and ratiometric approaches performed better than the phasor analysis approach compared to the ground truth. The deep learning approach had the most precision of the three methods. The ratiometric approach has the most versatility and maintained accuracy, albeit with less precision. Our data suggest that implementing these methods to analyze CMH images can drastically increase the processing speed while maintaining precision and accuracy.


2021 ◽  
Vol 13 (12) ◽  
pp. 2417
Author(s):  
Savvas Karatsiolis ◽  
Andreas Kamilaris ◽  
Ian Cole

Estimating the height of buildings and vegetation in single aerial images is a challenging problem. A task-focused Deep Learning (DL) model that combines architectural features from successful DL models (U-NET and Residual Networks) and learns the mapping from a single aerial imagery to a normalized Digital Surface Model (nDSM) was proposed. The model was trained on aerial images whose corresponding DSM and Digital Terrain Models (DTM) were available and was then used to infer the nDSM of images with no elevation information. The model was evaluated with a dataset covering a large area of Manchester, UK, as well as the 2018 IEEE GRSS Data Fusion Contest LiDAR dataset. The results suggest that the proposed DL architecture is suitable for the task and surpasses other state-of-the-art DL approaches by a large margin.


Author(s):  
Rahul Raj ◽  
Jeffrey P. Walker ◽  
Rohit Pingale ◽  
Rohit Nandan ◽  
Balaji Naik ◽  
...  

2020 ◽  
pp. 1-13
Author(s):  
Yundong Li ◽  
Yi Liu ◽  
Han Dong ◽  
Wei Hu ◽  
Chen Lin

The intrusion detection of railway clearance is crucial for avoiding railway accidents caused by the invasion of abnormal objects, such as pedestrians, falling rocks, and animals. However, detecting intrusions using deep learning methods from infrared images captured at night remains a challenging task because of the lack of sufficient training samples. To address this issue, a transfer strategy that migrates daytime RGB images to the nighttime style of infrared images is proposed in this study. The proposed method consists of two stages. In the first stage, a data generation model is trained on the basis of generative adversarial networks using RGB images and a small number of infrared images, and then, synthetic samples are generated using a well-trained model. In the second stage, a single shot multibox detector (SSD) model is trained using synthetic data and utilized to detect abnormal objects from infrared images at nighttime. To validate the effectiveness of the proposed method, two groups of experiments, namely, railway and non-railway scenes, are conducted. Experimental results demonstrate the effectiveness of the proposed method, and an improvement of 17.8% is achieved for object detection at nighttime.


Sign in / Sign up

Export Citation Format

Share Document