Combined use of three methods for high concentration ethanol production by Saccharomyces cerevisiae

1996 ◽  
Vol 18 (12) ◽  
pp. 1439-1440 ◽  
Author(s):  
P. Xu ◽  
A. Thomas ◽  
C. D. Gilson
Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 888
Author(s):  
Xuejiao Jin ◽  
Jie Zhang ◽  
Tingting An ◽  
Huihui Zhao ◽  
Wenhao Fu ◽  
...  

Lithium hexafluorophosphate (LiPF6) is one of the leading electrolytes in lithium-ion batteries, and its usage has increased tremendously in the past few years. Little is known, however, about its potential environmental and biological impacts. In order to improve our understanding of the cytotoxicity of LiPF6 and the specific cellular response mechanisms to it, we performed a genome-wide screen using a yeast (Saccharomyces cerevisiae) deletion mutant collection and identified 75 gene deletion mutants that showed LiPF6 sensitivity. Among these, genes associated with mitochondria showed the most enrichment. We also found that LiPF6 is more toxic to yeast than lithium chloride (LiCl) or sodium hexafluorophosphate (NaPF6). Physiological analysis showed that a high concentration of LiPF6 caused mitochondrial damage, reactive oxygen species (ROS) accumulation, and ATP content changes. Compared with the results of previous genome-wide screening for LiCl-sensitive mutants, we found that oxidative phosphorylation-related mutants were specifically hypersensitive to LiPF6. In these deletion mutants, LiPF6 treatment resulted in higher ROS production and reduced ATP levels, suggesting that oxidative phosphorylation-related genes were important for counteracting LiPF6-induced toxicity. Taken together, our results identified genes specifically involved in LiPF6-modulated toxicity, and demonstrated that oxidative stress and ATP imbalance maybe the driving factors in governing LiPF6-induced toxicity.


Fermentation ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 16 ◽  
Author(s):  
Luis Huezo ◽  
Ajay Shah ◽  
Frederick Michel

Previous studies have shown that pretreatment of corn slurries using ultrasound improves starch release and ethanol yield during biofuel production. However, studies on its effects on the mass transfer of substrates and products during fermentation have shown that it can have both beneficial and inhibitory effects. In this study, the effects of ultrasound on mass transfer limitations during fermentation were examined. Calculation of the external and intraparticle observable moduli under a range of conditions indicate that no external or intraparticle mass transfer limitations should exist for the mass transfer of glucose, ethanol, or carbon dioxide. Fermentations of glucose to ethanol using Saccharomyces cerevisiae were conducted at different ultrasound intensities to examine its effects on glucose uptake, ethanol production, and yeast population and viability. Four treatments were compared: direct ultrasound at intensities of 23 and 32 W/L, indirect ultrasound (1.4 W/L), and no-ultrasound. Direct and indirect ultrasound had negative effects on yeast performance and viability, and reduced the rates of glucose uptake and ethanol production. These results indicate that ultrasound during fermentation, at the levels applied, is inhibitory and not expected to improve mass transfer limitations.


1992 ◽  
Vol 42 (3) ◽  
pp. 183-189 ◽  
Author(s):  
A.H. El-Refai ◽  
M.S. El-Abyad ◽  
A.I. El-Diwany ◽  
L.A. Sallam ◽  
Reda F. Allam

2017 ◽  
pp. 239-279
Author(s):  
Fernanda Bravim ◽  
Melina Campagnaro Farias ◽  
Oeber De Freitas Quadros ◽  
Patricia Machado Bueno Fernandes

ScienceAsia ◽  
2019 ◽  
Vol 45 (3) ◽  
pp. 229 ◽  
Author(s):  
Pongpannee Phomikhet ◽  
Wanlapa Lorliam ◽  
Suthep Thaniyavarn ◽  
Somboon Tanasupawat ◽  
Ancharida Savarajara

Sign in / Sign up

Export Citation Format

Share Document