Penetration of large-scale electrostatic fields generated in the ionospheric dynamo region into the atmosphere at ground level and at altitudes in the F region

1976 ◽  
Vol 19 (10) ◽  
pp. 1043-1048
Author(s):  
B. N. Gershman ◽  
A. V. Samsonov
1999 ◽  
Vol 17 (4) ◽  
pp. 508-518 ◽  
Author(s):  
E. D. Tereshchenko ◽  
B. Z. Khudukon ◽  
M. O. Kozlova ◽  
T. Nygrén

Abstract. A new method of determining the anisotropy parameters of small-scale irregularities in the ionospheric F region is presented and experimental results are shown. The method is based on observations of amplitude fluctuations of radio waves transmitted by satellites flying above the F region. In practice, Russian navigational satellites are used and both the amplitude and the phase of the received signal is measured on the ground level. The method determines both the field-aligned anisotropy and the field-perpendicular anisotropy and orientation of the spatial spectrum of the irregularities, assuming that the contours of constant power have an elliptic shape. A possibility of applying the method to amplitude tomography is also discussed. Using a chain of receivers on the ground level, one could locate the regions of small-scale irregularities as well as determine their relative intensities. Then the large-scale background structures could be mapped simultaneously by means of ordinary ray tomography using the phase observations, and therefore the relations of small-scale and large-scale structures could be investigated.Key words. Ionosphere (auroral ionosphere; ionospheric irregularities; instruments and techniques)


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4112
Author(s):  
Fidel Alejandro Rodríguez-Corbo ◽  
Leyre Azpilicueta ◽  
Mikel Celaya-Echarri ◽  
Peio Lopez-Iturri ◽  
Ana V. Alejos ◽  
...  

The characterization of different vegetation/vehicle densities and their corresponding effects on large-scale channel parameters such as path loss can provide important information during the deployment of wireless communications systems under outdoor conditions. In this work, a deterministic analysis based on ray-launching (RL) simulation and empirical measurements for vehicle-to-infrastructure (V2I) communications for outdoor parking environments and smart parking solutions is presented. The study was carried out at a frequency of 28 GHz using directional antennas, with the transmitter raised above ground level under realistic use case conditions. Different radio channel impairments were weighed in, considering the progressive effect of first, the density of an incremental obstructed barrier of trees, and the effect of different parked vehicle densities within the parking lot. On the basis of these scenarios, large-scale parameters and temporal dispersion characteristics were obtained, and the effect of vegetation/vehicle density changes was assessed. The characterization of propagation impairments that different vegetation/vehicle densities can impose onto the wireless radio channel in the millimeter frequency range was performed. Finally, the results obtained in this research can aid communication deployment in outdoor parking conditions.


1997 ◽  
Vol 15 (8) ◽  
pp. 1048-1056 ◽  
Author(s):  
R. L. Balthazor ◽  
R. J. Moffett

Abstract. A global coupled thermosphere-ionosphere-plasmasphere model is used to simulate a family of large-scale imperfectly ducted atmospheric gravity waves (AGWs) and associated travelling ionospheric disturbances (TIDs) originating at conjugate magnetic latitudes in the north and south auroral zones and subsequently propagating meridionally to equatorial latitudes. A 'fast' dominant mode and two slower modes are identified. We find that, at the magnetic equator, all the clearly identified modes of AGW interfere constructively and pass through to the opposite hemisphere with unchanged velocity. At F-region altitudes the 'fast' AGW has the largest amplitude, and when northward propagating and southward propagating modes interfere at the equator, the TID (as parameterised by the fractional change in the electron density at the F2 peak) increases in magnitude at the equator. The amplitude of the TID at the magnetic equator is increased compared to mid-latitudes in both upper and lower F-regions with a larger increase in the upper F-region. The ionospheric disturbance at the equator persists in the upper F-region for about 1 hour and in the lower F-region for 2.5 hours after the AGWs first interfere, and it is suggested that this is due to enhancements of the TID by slower AGW modes arriving later at the magnetic equator. The complex effects of the interplays of the TIDs generated in the equatorial plasmasphere are analysed by examining neutral and ion winds predicted by the model, and are demonstrated to be consequences of the forcing of the plasmasphere along the magnetic field lines by the neutral air pressure wave.


2011 ◽  
Vol 29 (8) ◽  
pp. 1355-1363 ◽  
Author(s):  
H. T. Cai ◽  
F. Yin ◽  
S. Y. Ma ◽  
I. W. McCrea

Abstract. In this paper, we present observational evidence for the trans-polar propagation of large-scale Traveling Ionospheric Disturbances (TIDs) from their nightside source region to the dayside. On 13 February 2001, the 32 m dish of EISCAT Svalbard Radar (ESR) was directing toward the geomagnetic pole at low elevation (30°) during the interval 06:00–12:00 UT (MLT ≈ UT + 3 h), providing an excellent opportunity to monitor the ionosphere F-region over the polar cap. The TIDs were first detected by the ESR over the dayside north polar cap, propagating equatorward, and were subsequently seen by the mainland UHF radar at auroral latitudes around geomagnetic local noon. The propagation properties of the observed ionization waves suggest the presence of a moderately large-scale TIDs, propagating across the northern polar cap from the night-time auroral source during substorm conditions. Our results agree with the theoretical simulations by Balthazor and Moffett (1999) in which poleward-propagating large-scale traveling atmospheric disturbances were found to be self-consistently driven by enhancements in auroral heating.


2007 ◽  
Vol 46 (4) ◽  
pp. 445-456 ◽  
Author(s):  
Katherine Klink

Abstract Mean monthly wind speed at 70 m above ground level is investigated for 11 sites in Minnesota for the period 1995–2003. Wind speeds at these sites show significant spatial and temporal coherence, with prolonged periods of above- and below-normal values that can persist for as long as 12 months. Monthly variation in wind speed primarily is determined by the north–south pressure gradient, which captures between 22% and 47% of the variability (depending on the site). Regression on wind speed residuals (pressure gradient effects removed) shows that an additional 6%–15% of the variation can be related to the Arctic Oscillation (AO) and Niño-3.4 sea surface temperature (SST) anomalies. Wind speeds showed little correspondence with variation in the Pacific–North American (PNA) circulation index. The effect of the strong El Niño of 1997/98 on the wind speed time series was investigated by recomputing the regression equations with this period excluded. The north–south pressure gradient remains the primary determinant of mean monthly 70-m wind speeds, but with 1997/98 removed the influence of the AO increases at nearly all stations while the importance of the Niño-3.4 SSTs generally decreases. Relationships with the PNA remain small. These results suggest that long-term patterns of low-frequency wind speed (and thus wind power) variability can be estimated using large-scale circulation features as represented by large-scale climatic datasets and by climate-change models.


2008 ◽  
Vol 26 (4) ◽  
pp. 843-852 ◽  
Author(s):  
T. K. Yeoman ◽  
G. Chisham ◽  
L. J. Baddeley ◽  
R. S. Dhillon ◽  
T. J. T. Karhunen ◽  
...  

Abstract. The Super Dual Auroral Radar Network (SuperDARN) network of HF coherent backscatter radars form a unique global diagnostic of large-scale ionospheric and magnetospheric dynamics in the Northern and Southern Hemispheres. Currently the ground projections of the HF radar returns are routinely determined by a simple rangefinding algorithm, which takes no account of the prevailing, or indeed the average, HF propagation conditions. This is in spite of the fact that both direct E- and F-region backscatter and 1½-hop E- and F-region backscatter are commonly used in geophysical interpretation of the data. In a companion paper, Chisham et al. (2008) have suggested a new virtual height model for SuperDARN, based on average measured propagation paths. Over shorter propagation paths the existing rangefinding algorithm is adequate, but mapping errors become significant for longer paths where the roundness of the Earth becomes important, and a correct assumption of virtual height becomes more difficult. The SuperDARN radar at Hankasalmi has a propagation path to high power HF ionospheric modification facilities at both Tromsø on a ½-hop path and SPEAR on a 1½-hop path. The SuperDARN radar at Þykkvibǽr has propagation paths to both facilities over 1½-hop paths. These paths provide an opportunity to quantitatively test the available SuperDARN virtual height models. It is also possible to use HF radar backscatter which has been artificially induced by the ionospheric heaters as an accurate calibration point for the Hankasalmi elevation angle of arrival data, providing a range correction algorithm for the SuperDARN radars which directly uses elevation angle. These developments enable the accurate mappings of the SuperDARN electric field measurements which are required for the growing number of multi-instrument studies of the Earth's ionosphere and magnetosphere.


An investigation is made into the excitation of large-scale atmospheric oscillations by the direct absorption of incoming solar radiation by atmospheric ozone. The atmospheric temperature profile is chosen to agree favourably with the main features of the observed temperature distribution, particularly as regards the maximum around the 50 km height; this distribution is shown to be non-resonant as far as the solar semidiurnal component is concerned. The excited solar diurnal, semidiurnal and terdiurnal pressure oscillations are computed and we find that although the largest Fourier component in the heating is the diurnal term , the tide it excites is small in keeping with observation. On the other hand, the excited semidiurnal oscillation is much larger than that due to any previously considered thermal mechanism . It is found that the main semidiurnal and terdiurnal tides generated by the direct absorption of insolation by ozone as calculated in the present work, together with published results regarding water vapour absorption, can adequately account for the observed values at ground level. The seasonal variations of the semi and terdiurnal tides are also calculated and these agree extremely well with observation. Finally, the change of phase of 180° in the vertical distribution of the solar semidiurnal oscillation, which is expected from the analysis of the quiet day magnetic variation, is accounted for in the present work.


2008 ◽  
Vol 26 (11) ◽  
pp. 3355-3364 ◽  
Author(s):  
F. S. Rodrigues ◽  
D. L. Hysell ◽  
E. R. de Paula

Abstract. The 30 MHz coherent backscatter radar located at the equatorial observatory in São Luís, Brazil (2.59° S, 44.21° W, −2.35° dip lat) has been upgraded to perform coherent backscatter radar imaging. The wide field-of-view of this radar makes it well suited for radar imaging studies of ionospheric irregularities. Radar imaging observations were made in support to the spread F Experiment (SpreadFEx) campaign. This paper describes the system and imaging technique and presents results from a bottom-type layer that preceded fully-developed radar plumes on 25 October 2005. The radar imaging technique was able to resolve decakilometric structures within the bottom-type layer. These structures indicate the presence of large-scale waves (~35 km) in the bottomside F-region with phases that are alternately stable and unstable to wind-driven gradient drift instabilities. The observations suggest that these waves can also cause the initial perturbation necessary to initiate the Generalized Rayleigh-Taylor instability leading to spread F. The electrodynamic conditions and the scale length of the bottom-type layer structures suggest that the waves were generated by the collisional shear instability. These results indicate that monitoring bottom-type layers may provide helpful diagnostics for spread F forecasting.


2021 ◽  
Author(s):  
Sally Jahn ◽  
Elke Hertig

<p>Air pollution and heat events present two major health risks, both already independently posing a significant threat to human health and life. High levels of ground-level ozone (O<sub>3</sub>) and air temperature often coincide due to the underlying physical relationships between both variables. The most severe health outcome is in general associated with the co-occurrence of both hazards (e.g. Hertig et al. 2020), since concurrent elevated levels of temperature and ozone concentrations represent a twofold exposure and can lead to a risk beyond the sum of the individual effects. Consequently, in the current contribution, a compound approach considering both hazards simultaneously as so-called ozone-temperature (o-t-)events is chosen by jointly analyzing elevated ground-level ozone concentrations and air temperature levels in Europe.</p><p>Previous studies already point to the fact that the relationship of underlying synoptic and meteorological drivers with one or both of these health stressors as well as the correlation between both variables vary with the location of sites and seasons (e.g. Otero et al. 2016; Jahn, Hertig 2020). Therefore, a hierarchical clustering analysis is applied to objectively divide the study domain in regions of homogeneous, similar ground-level ozone and temperature characteristics (o-t-regions). Statistical models to assess the synoptic and large-scale meteorological mechanisms which represent main drivers of concurrent o-t-events are developed for each identified o-t-region.</p><p>Compound elevated ozone concentration and air temperature events are expected to become more frequent due to climate change in many parts of Europe (e.g. Jahn, Hertig 2020; Hertig 2020). Statistical projections of potential frequency shifts of compound o-t-events until the end of the twenty-first century are assessed using the output of Earth System Models (ESMs) from the sixth phase of the Coupled Model Intercomparison Project (CMIP6).</p><p><em>Hertig, E. (2020) Health-relevant ground-level ozone and temperature events under future climate change using the example of Bavaria, Southern Germany. Air Qual. Atmos. Health. doi: 10.1007/s11869-020-00811-z</em></p><p><em>Hertig, E., Russo, A., Trigo, R. (2020) Heat and ozone pollution waves in Central and South Europe- characteristics, weather types, and association with mortality. Atmosphere. doi: 10.3390/atmos11121271</em></p><p><em>Jahn, S., Hertig, E. (2020) Modeling and projecting health‐relevant combined ozone and temperature events in present and future Central European climate. Air Qual. Atmos. Health. doi: 10.1007/s11869‐020‐009610</em></p><p><em>Otero N., Sillmann J., Schnell J.L., Rust H.W., Butler T. (2016) Synoptic and meteorological drivers of extreme ozone concentrations over Europe. Environ Res Lett. doi: 10.1088/ 1748-9326/11/2/024005</em></p>


Sign in / Sign up

Export Citation Format

Share Document