Radio bursts from outer space near the earth in the meter-wavelength range

1976 ◽  
Vol 19 (8) ◽  
pp. 777-780
Author(s):  
A. T. Nesmyanovich ◽  
S. I. Musatenko ◽  
V. A. Kravchenko ◽  
V. V. Chmil'

Although nearly all the major advances in radio astronomy have taken place during the last fifteen years the basic discoveries were made 30 years ago. At that time Jansky realized that the residual noise in his receiving equipment had a daily sidereal variation and must be the result of radio waves reaching the earth from outer space, and Appleton in the U. K. with Breit and Tuve in America through their studies of the ionosphere laid the foundation of the radio echo techniques of radio astronomy. The radio emission from outer space can be received on earth in the wavelength range from a few millimetres to 10 or 20 metres. The short wave end is limited by absorption in the atmosphere and the long wave end by the ionosphere, and this upper limit tends to vary in sympathy with ionospheric conditions throughout the sunspot cycle. These hindrances will soon be overcome when suitable equipment can be carried in earth satellites; then it should be possible to determine the true wavelength range of these extraterrestrial emissions.


2019 ◽  
Vol 11 (6) ◽  
pp. 56
Author(s):  
Leonardo Golubovic ◽  
Steven Knudsen

The discovery of ultra-strong materials such as carbon nanotubes and diamond nano-thread structures has recently motivated an enhanced interest for the physics of Space Elevators connecting the Earth with outer space. A new concept has recently emerged in space elevator physics: Rotating Space Elevators (RSE) [Golubović, L. & Knudsen, S. (2009). Classical and statistical mechanics of celestial scale spinning strings: Rotating space elevators. Europhysics Letters 86(3), 34001.]. Objects sliding along rotating RSE string (sliding climbers) do not require internal engines or propulsion to be transported from the Earth's surface into outer space. Here we address the physics of a special RSE family, Uniform Stress Rotating Space Elevators (USRSE), characterized by constant tensile stress along the string. From the point of view of materials science, this condition provides the best control of string’s global integrity. We introduce an advanced analytic approach to obtain the dynamic equilibrium configurations of USRSE strings. We use our results to discuss the applications of USRSE for spacecraft launching.


Author(s):  
V. A. Soloviev ◽  
A. A. Kovalenko ◽  
S. V. Soloviev

The article discusses the main directions of development of cosmonautics, which have an impact on ensuring the connectivity of the territories of the Russian Federation. The key role of such areas of space activity as space navigation, space communications, remote sensing of the Earth, applied and fundamental research in space is shown. An analysis of the development trends of applied cosmonautics, existing problems and ways to solve them is conducted: increasing the scientific space and remote sensing group of the Earth, methods of improving the accuracy of positioning, availability, noise immunity of space navigation, etc.


Author(s):  
John Chambers ◽  
Jacqueline Mitton

This chapter demonstrates how American geochemist Clair C. Patterson found out about the Earth's true age. Announcing his discovery at a meeting of the Geological Society of America, Patterson told the gathered delegates that Earth is precisely 4.55 billion years old. The chapter states that although the Earth can be examined in much greater detail than any other body in the solar system, the key to calculating Earth's age lay in rocks from outer space. What Patterson actually did was measure the age of a meteorite. To work out when Earth formed, Patterson had to assume that Earth and the meteorite formed at about the same time.


2001 ◽  
Vol 5 (4) ◽  
pp. 569-576 ◽  
Author(s):  
C. Bounama ◽  
S. Franck ◽  
W. von Bloh

Abstract. Questions of how water arrived on the Earth’s surface, how much water is contained in the Earth system as a whole, and how much water will be available in the future in the surface reservoirs are of central importance to our understanding of the Earth. To answer the question about the fate of the Earth’s ocean, one has to study the global water cycle under conditions of internal and external forcing processes. Modern estimates suggest that the transport of water to the surface is five times smaller than water movement to the mantle, so that the Earth will lose all its sea-water in one billion years from now. This straightforward extrapolation of subduction-zone fluxes into the future seems doubtful. Using a geophysical modelling approach it was found that only 27% of the modern ocean will be subducted in one billion years. Internal feedbacks will not be the cause of the ocean drying out. Instead, the drying up of surface reservoirs in the future will be due to the increase in temperature caused by a maturing Sun connected to hydrogen escape to outer space. Keywords: Surface water reservoir, water fluxes, regassing, degassing, global water cycle


Author(s):  
Martha Mejía-Kaiser

International space law is a branch of public international law. Norms of treaty law and customary law provide a foundation for the behavior of the subjects of international law performing space activities. Five multilateral space treaties are in effect, which are complemented by important recommendations of international organizations such as United Nations (UN) General Assembly Resolutions and International Telecommunication Union (ITU) Regulations. The Inter-Agency Space Debris Mitigation Coordination Committee (IADC), a non-governmental body composed of several space agencies (for instance, the European Space Agency, the United States National Aeronautics and Space Administration, the Japanese Aerospace Exploration Agency, the Russian Federal Space Agency), issued its Space Debris Mitigation Guidelines in 2002. The IADC defines “space debris” as “all man-made space objects including fragments and elements thereof, in Earth orbit or re-entering the atmosphere, that are non-functional” (IADC, 2002, Revision 1, 2007, 3.1. Space Debris). Although the term “space debris” was not included in any space treaty, the drafters of the space treaties considered space objects as “hazardous” because “component parts of a space object as well as its launch vehicles and parts thereof” detach in course of normal launching operations, because space objects can fragment during an attempted launch, and because space objects that re-enter Earth’s atmosphere and survive friction have the potential to cause damage. In addition, radioactive and chemical substances on board space objects may represent a hazard to populations and the environment on the Earth. Besides the threats to aircraft in flight and to persons and property on the surface of the Earth, space debris in orbit is increasing alarmingly and poses a threat to manned space missions and non-manned space objects. While the Convention on International Liability for Damages Caused by Space Objects (Liability Convention, 1972) considers the threats of space objects during launch, in outer space, and when entering the Earth’s atmosphere, there have been efforts to minimize the generation of space debris in orbit, outside the framework of the space treaties. The IADC Space Debris Mitigation Guidelines are a comprehensive list of recommendations to launching states, owners, and operators of space objects. They are increasingly recognized by states through the creation of codes of conduct, national legislation, recommendations of international organizations, and state practice. Furthermore, non-governmental institutions, like the International Organization for Standardization, are providing more detailed technical instructions for the implementation of the Space Debris Mitigation Guidelines, which are a breakthrough for the application of the guidelines by states of different economic and technical standing. Even though states are reluctant to accept new obligations through treaties, recommendations and state practice are becoming powerful instruments to avert the dangers of hazardous space debris that may create damage on the Earth or in orbit. Space debris also is becoming one of the drivers for the initiatives of the United Nations on the long-term sustainability of outer space activities to promote the existing mitigation guidelines and to formulate new guidelines for clearing outer space of debris.


1983 ◽  
Vol 66 ◽  
pp. 451-455
Author(s):  
B.M. Vladimirsky ◽  
V.P. Bobova ◽  
N.M. Bondarenko ◽  
V.K. Veretennikova

AbstractThe measurements of the amplitudes envelope of Pc 3–4 geomagnetic micropulsations obtained at the Borok Geophysical Observatory were analysed by the cosinor method to search for magnetospheric pulsations with a period of about 160 m. 216 days of observations in 1974–1978 were used. It was found that Pc3–4 amplitudes are modulated by the period 160.010 m with a stable phase. The maximum of the Pc3–4 amplitudes follows approximately 20 m after the maximum of the solar expansion velocity (for the center of the disk) in the optical observations of Severny et al. This modulation of the Pc3–4 amplitudes could be caused by the presence of an oscillating component in solar UV radiation over the wavelength range 100-900 Å. The amplitude of the UV flux variation may be as large as 2–4%.


1991 ◽  
Vol 4 (2) ◽  
pp. 249-280
Author(s):  
Lousewies S.A.L.B van der Laan

The article addresses the establishment of a legal regime concerning liability questions of the aerospace plane. The existing air and space law, as laid down for example in the Chicago Convention and the Outer Space Treaty -especially the definition of the words ‘aircraft’ and ‘space object’-is used as a starting point. The applicability of the existing regimes to the aerospace plane is then evaluated. Two concrete cases, namely liability resulting from damage to third parties on the suiface of the earth and liability after collisions, are presented in depth to illustrate the legal questions that this new hybrid craft will raise. Finally some modest suggestions are made as to the resolution of the conflicts.


2017 ◽  
Vol 9 (5) ◽  
pp. 12
Author(s):  
Leonardo Golubovic ◽  
Steven Knudsen

The physics of manmade celestial scale objects, such as Space Elevators connecting the Earth with outer space, has recently attracted increased attention of diverse researchers. In this article we review basic physics of celestial scale dumbbells such as the Analemma Tower suspended from an asteroid orbiting the Earth (Clouds, 2017). Celestial dumbbells involve two large masses (top and bottom) connected by strings. The two masses move geosynchronously with the Earth, with the bottom mass remaining close to the Earth and the top mass moving above the Earth’s geosynchronous satellite orbit. Appealing examples of celestial scale dumbbells are untied Rotating Space Elevators (RSE) (Knudsen & Golubovic, 2015). Physics of untied rotating space elevators. European Physical Journal Plus 130, 243.]. Celestial scale dumbbells exhibit rich and interesting nonlinear dynamics caused by instabilities of dumbbell geosynchronous motion discussed in this review article. We also point out that celestial scale dumbbells are physically feasible (in terms of nowadays available materials strengths) on dwarf planets in the main asteroid belt of the Solar system such as Ceres.


Sign in / Sign up

Export Citation Format

Share Document