The investigation of the Universe by radio astronomy

Although nearly all the major advances in radio astronomy have taken place during the last fifteen years the basic discoveries were made 30 years ago. At that time Jansky realized that the residual noise in his receiving equipment had a daily sidereal variation and must be the result of radio waves reaching the earth from outer space, and Appleton in the U. K. with Breit and Tuve in America through their studies of the ionosphere laid the foundation of the radio echo techniques of radio astronomy. The radio emission from outer space can be received on earth in the wavelength range from a few millimetres to 10 or 20 metres. The short wave end is limited by absorption in the atmosphere and the long wave end by the ionosphere, and this upper limit tends to vary in sympathy with ionospheric conditions throughout the sunspot cycle. These hindrances will soon be overcome when suitable equipment can be carried in earth satellites; then it should be possible to determine the true wavelength range of these extraterrestrial emissions.

Author(s):  
Geoff Cottrell

The atmosphere influences much of what can be seen through a telescope. Most of the atmosphere lies within 16 km from the Earth’s surface. Further out, the air becomes thinner until it merges with outer space. In the ionosphere—a layer 75–1000 km high—neutral atoms are ionized by solar radiation and high-energy cosmic ray particles arriving from distant parts of the Universe. ‘Windows in the sky’ explains electromagnetic radiation and the electromagnetic spectrum from gamma rays through to visible light and radio waves. Electromagnetic waves are transverse waves that can be polarized. The atmosphere acts as a filter and blocks cosmic electromagnetic radiation. Atmospheric turbulence distorts starlight resulting in ‘twinkling’ stars.


Author(s):  
Arthur M. Diamond

Cognitively diverse project entrepreneurs are the ones most likely to succeed at making a ding in the universe. Project entrepreneurs are more effective because they are more likely to persevere at achieving their project and at undertaking new breakthrough innovations. Cyrus Field, Marconi, Walt Disney, Sam Walton, and Steve Jobs were project entrepreneurs. Innovative entrepreneurs are likely to either know less theory, or to take theory less seriously, which allows them to try what theory says is impossible. For instance, the physics of Marconi’s day said that his radio waves should go straight into space rather than curve with the earth to cross the Atlantic. Conversely, innovative entrepreneurs often have more tacit knowledge. Innovative entrepreneurs pursue serendipitous observations or slow hunches, often through trial-and-error experiments, and may benefit from cognitive diversity, such as dyslexia and Asperger’s syndrome. What inventors and entrepreneurs know is the subject matter of the epistemology of innovation.


Author(s):  
Basanti Jain

The abnormal increase in the concentration of the greenhouse gases is resulting in higher temperatures. We call this effect is global warming. The average temperature around the world has increased about 1'c over 140 years, 75% of this has risen just over the past 30 years. The solar radiation, as it reaches the earth, produces "greenhouse effect" in the atmosphere. The thick atmospheric layers over the earth behaves as a glass surface, as it permits short wave radiations from coming in, but checks the outgoing long wave ones. As a result, gradually the atmosphere gets heated up during the day as well as night. If such an effect were not there in the atmosphere the ultraviolet, infrared and other ionizing radiations would have also entered our atmosphere and the very existence of life would have been endangered. The ozone layer shields the earth from the sun's harmful ultraviolet radiations. The warm earth emits long wave (infrared)   radiations, which is partly absorbed by the green house gaseous blanket. This atmospheric blanket raises the earth’s temperature.


Author(s):  
S.Ya. Braude ◽  
V.M. Kontorovich

The book tells about the achievements of modern radio astronomy. Data on radio galaxies, quasars, pulsars, space masers, and other space objects emitting radio waves are presented in a popular form. The ways of evolution of stars, supernovae and radio eruptions of their remains, the formation of white dwarfs and neutron stars, the phenomena in the centers of galaxies and the fusion of galaxies responsible for the formation of radio galaxies and quasars are considered. The radio radiation of the Sun and planets is discussed. A modern view of the evolution of the universe, the origin of the relic radiation left over from the Great Eruption, and its anisotropy is presented. A separate chapter is devoted to the description of radio telescopes.


1998 ◽  
Vol 11 (2) ◽  
pp. 985-987
Author(s):  
L. I. Gurvits

Very Long Baseline Interferometry (VLBI) technique occupies a special place among tools for studying the Universe due to its record high angular resolution. The latter is in the inverse proportion to the length of interferometer baseline at any given wavelength. Until recently, the available angular resolution in radio domain of about 1 milliarcsecond at centimeter wavelengths was limited by the diameter of the Earth. However, many astrophysical problems require a higher angular resolution. The only way to achieve this at a given wavelength is to create an interferometer with the baseline larger than the Earth’s diameter by placing at least one telescope in space. In February 1997, the first dedicated Space VLBI mission, VLBI Space Observatory Program (VSOP), led by the Institute of Space and Astronautical Sciences (Japan) has been launched (Hirabayashi 1997). The VSOP mission opens a new dimension in the development of radio astronomy of extremely high angular resolution and will be followed by other Space VLBI missions. A review of scientific drives and technological challenges of the next generation Space VLBI mission have been discussed, for example, by Gurvits et al. (1996) and Ulvestad et al. (1997).


1961 ◽  
Vol 14 (1) ◽  
pp. 14-21 ◽  
Author(s):  
C. M. Cade

The year 1932 was one which had no great apparent significance for navigators, and yet it saw the commencement of two new lines of research which today, after an interval of more than a quarter-of-a-century, promise important contributions to the safety of navigators both at sea and in the air.The two lines of research were superficially quite unrelated, but fundamentally they relied upon the same principle—the detection of radiant energy emitted by objects solely as a result of their temperature. The first of these small beginnings was the discovery by K. G. Jansky that radio waves could be detected from extra-terrestrial sources: the second was the commencement by the U.S. Signal Corps Engineering Laboratories of an intensive study of infra-red devices with the object of obtaining night vision without illumination of the field of view.From Jansky's discovery has sprung the whole science of radio astronomy, which has revolutionized our ideas about the universe, and brought in its wake, as one practical benefit, the radio sextant. From the work of the U.S. Signal Corps there resulted a number of very useful infra-red components, including the pneumatic detector, better known as the Golay cell.


1976 ◽  
Vol 19 (8) ◽  
pp. 777-780
Author(s):  
A. T. Nesmyanovich ◽  
S. I. Musatenko ◽  
V. A. Kravchenko ◽  
V. V. Chmil'

2002 ◽  
Vol 10 (2) ◽  
pp. 285-300 ◽  
Author(s):  
FRANCIS GRAHAM - SMITH

The special value of radio astronomy lies in the probing of extreme conditions in the universe, including the highest energies and the lowest temperatures. Radio waves can penetrate clouds of gas and dust to reveal objects in the universe and, in particular, in our Galaxy that cannot be seen by visible light. To achieve the highest resolution, radio telescopes in widely separate parts of our globe combine their reception to produce a synthesized image. This is a splendid example of international collaboration. Among the images visualized are pulsars, derived from the remnants of supernovae explosions, and quasar sources powered by black holes.


2001 ◽  
Vol 24 (3) ◽  
pp. 255-265 ◽  
Author(s):  
Nguyen Quang Rieu

AbstractRadio astronomy has a major role in the study of the universe. The spiral structure of our Galaxy and the cosmic background radiation were first detected, and the dense component of interstellar gas is studied, at radio wavelengths. COBE revealed very weak temperature fluctuations in the microwave background, considered to be the seeds of galaxies and clusters of galaxies. Most electromagnetic radiation from outer space is absorbed or reflected by the Earth’s atmosphere, except in two narrow spectral windows: the visible-near-infrared and the radio, which are nearly transparent. Centimetre and longer radio waves propagate almost freely in space; observations of them are practically independent of weather. Turbulence in our atmosphere does not distort the wavefront, which simplifies the building of radio telescopes, because no devices are needed to correct for it. Observations at these wavelengths can be made in high atmospheric humidity, or where the sky is not clear enough for optical telescopes.Simple instruments operating at radio wavelengths can be built at low cost in tropical countries, to teach students and to familiarize them with radio astronomy. We describe a two-antennae radio interferometer and a single-dish radio telescope operating at centimetre wavelengths. The Sun and strong synchrotron radio-sources, like Cassiopeia A and Cygnus A, are potential targets.


Religions ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 418 ◽  
Author(s):  
Deana L. Weibel

This paper, based mainly on astronauts’ first-person writings, historical documents, and my own ethnographic interviews with nine astronauts conducted between 2004 and 2020, explores how encountering the earth and other celestial objects in ways never before experienced by human beings has influenced some astronauts’ cosmological understandings. Following the work of Timothy Morton, the earth and other heavenly bodies can be understood as “hyperobjects”, entities that are distributed across time and space in ways that make them difficult for human beings to accurately understand, but whose existence is becoming increasingly detectable to us. Astronauts in outer space are able to perceive celestial objects from vantages literally unavailable on earth, which has often (but not always) had a profound influence on their understandings of humanity, life, and the universe itself. Frank Wright’s term, the “overview effect”, describes a cognitive shift resulting from seeing the Earth from space that increases some astronauts’ sense of connection to humanity, God, or other powerful forces. Following NASA convention (NASA Style Guide, 2012), I will capitalize both Earth and Moon, but will leave all quotations in their original style. The “ultraview effect” is a term I introduce here to describe the parallel experience of viewing the Milky Way galaxy from the Moon’s orbit (a view described reverently by one respondent as a “something I was not ready for”) that can result in strong convictions about the prevalence of life in the universe or even unorthodox beliefs about the origins of humanity. I will compare Morton’s ideas about humanity’s increased awareness of hyperobjects with Joye and Verpooten’s work on awe in response to “bigness”, tying both to astronauts’ lived experiences in order to demonstrate the usefulness of ethnographic data in this context, discuss how human experiences in outer space might influence religious practices and beliefs, and suggest that encounters with hyperobjects hold the potential to be socially beneficial.


Sign in / Sign up

Export Citation Format

Share Document