Interfacial role and properties in model composites: Fracture surfaces by scanning electron microscopy

1989 ◽  
Vol 24 (7) ◽  
pp. 2555-2570 ◽  
Author(s):  
James D. Miller ◽  
Hatsuo Ishida ◽  
Frans H. J. Maurer
2017 ◽  
Vol 264 ◽  
pp. 112-115
Author(s):  
Erfan Suryani Abdul Rashid ◽  
Wageeh Abdulhadi Yehye ◽  
Nurhidayatullaili Muhd Julkapli ◽  
Sharifah Bee O.A. Abdul Hamid

Nanocellulose (NCC) is incorporated into nitrile butadiene rubber (NBR) latex with the composition 0 to 5 phr using dipping method. Mechanical properties of NBR/NCC composites using tensile test was used to characterize their mechanical performance and the fracture surfaces post tensile test were studied. The tensile strength of NBR/NCC composites increase significantly with the addition of nanocellulose. This could be anticipated due to the presence of Van der Waals interaction between hydrophilic natures of nanocellulose with hydrophobic of NBR consequently limits the tearing propagation. The result was supported with the fracture surfaces morphology viewed under Fourier Emission Scanning Electron Microscopy (FESEM).


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jiewei Gao ◽  
Guangze Dai ◽  
Junwen Zhao ◽  
Hengkui Li ◽  
Lei Xu ◽  
...  

To study the influence of indentation on the fatigue strength of untreated and carbonitrided specimens of S38C steel, the fatigue limit of specimens with and without indentations was tested. Fracture surfaces were observed using scanning electron microscopy (SEM). The results show that the fatigue strength of the untreated specimen decreases with increasing dimension of indentation, without significant difference compared to the predicted results. Compared to the fatigue limit of the untreated specimen, those of the carbonitrided specimen and the carbonitrided specimen whose compound layer was polished were improved by 12% and 40%, respectively. The fatigue strength of the carbonitrided specimen decreased sharply with increasing indentation size because of the presence of microcracks in the compound layer. When the compound layer was removed, the fatigue limit was observed to be less sensitive to indentation than that of the carbonitrided specimen.


2013 ◽  
Vol 19 (2) ◽  
pp. 496-500 ◽  
Author(s):  
Luis Rogerio de Oliveira Hein ◽  
José Alberto de Oliveira ◽  
Kamila Amato de Campos

AbstractCorrelative fractography is a new expression proposed here to describe a new method for the association between scanning electron microscopy (SEM) and light microscopy (LM) for the qualitative and quantitative analysis of fracture surfaces. This article presents a new method involving the fusion of one elevation map obtained by extended depth from focus reconstruction from LM with exactly the same area by SEM and associated techniques, as X-ray mapping. The true topographic information is perfectly associated to local fracture mechanisms with this new technique, presented here as an alternative to stereo-pair reconstruction for the investigation of fractured components. The great advantage of this technique resides in the possibility of combining any imaging methods associated with LM and SEM for the same observed field from fracture surface.


1974 ◽  
Vol 9 (3) ◽  
pp. 423-429 ◽  
Author(s):  
Deborah Walsh ◽  
M. A. Otooni ◽  
M. E. Taylor ◽  
M. J. Marcinkowski

2021 ◽  
Author(s):  
Sarath Chandran ◽  
Wenqi Liu ◽  
Junhe Lian ◽  
Sebastian Münstermann ◽  
Patricia Verleysen

To assess the effect of stress state and strain rate on damage and fracture of a commercial DP1000 steel with a very fine microstructure, an extensive series of tests were performed. Using finite element simulations, eight different sample geometries, including a dogbone, a central hole, a shear and several notched samples, were designed to achieve both proportional and non-proportional stress states using conventional test benches. Tested at quasi-static, intermediate and, dynamic deformation rates, in total 175 tests were performed. Local strain fields were obtained by digital image correlation. A correction procedure was worked out to eliminate the influence of thermal softening. After testing, scanning electron microscopy was employed to analyse the fracture surfaces. Tests and fractography allowed to draw systematic conclusions on the response of the DP1000 steel. A two-stage strain rate sensitivity of strength is found with a gradually increasing slope at low strain rates and a much steeper rise at high strain rates, which is further amplified at higher triaxiality stress states. The experimentally derived fracture loci revealed a dominant, detrimental impact of the stress triaxiality that is most pronounced at intermediate strain rates. A remarkable, non-monotonic evolution of the fracture strain with strain rate is observed: the highest values were obtained at intermediate rates. Scanning electron microscopy images of the fracture surfaces indicate a void-assisted ductile fracture, though with the occurrence of brittle features triggered at dynamic strain rates. Fracture morphology and dimple features are heavily dependent on stress state, strain rate and loading path.


Sign in / Sign up

Export Citation Format

Share Document