Fatigue resistance of high-temperature alloys under cyclic temperature variation. Report 1. Study technique and results

1994 ◽  
Vol 26 (3) ◽  
pp. 175-180 ◽  
Author(s):  
V. T. Troshchenko ◽  
B. A. Gryaznov ◽  
Yu. B. Yamshanov
Alloy Digest ◽  
2003 ◽  
Vol 52 (8) ◽  

Abstract Haynes 625SQ alloy is a modification of Haynes 625 alloy (see Alloy Digest Ni-354, January 1988) with tighter controls on chemistry and a finer grain size for fatigue resistance up to 680 deg C (1250 deg F). This datasheet provides information on composition, physical properties, microstructure, elasticity, and tensile properties as well as fatigue. It also includes information on high temperature performance as well as heat treating. Filing Code: Ni-612. Producer or source: Haynes International Inc.


2020 ◽  
Vol 2020 (11) ◽  
pp. 1292-1299
Author(s):  
I. M. Razumovskii ◽  
V. I. Razumovskiy ◽  
I. A. Logachev ◽  
A. O. Rodin ◽  
M. I. Razumovsky

Author(s):  
Soo-yeon Seo ◽  
Jong-wook Lim ◽  
Su-hyun Jeong

AbstractTo figure out the change in the reinforcing effect of FRP system used for the retrofit of RC beam when it is exposed to high temperature, it is required to evaluate not only the behavior of the entire beam, but also the bond performance at anchorage zone through a bond test according to the increase of external temperature. Moreover, the study to find various fire-protection methods is necessary to prevent the epoxy from reaching the critical temperature during an exposure to high temperature. In this manner, the fire-resistance performances of externally bonded (EB) FRP and near-surface-mounted (NSM) FRP to concrete block were evaluated by high-temperature exposure tests after performing a fire-protection on the surface in this paper. Board-type insulation with mortar was considered for the fire-protection of FRP system. After the fire-protection of the FRPs bonded to concrete blocks, an increasing exposure temperature was applied to the specimens with keeping a constant shear bond stress between concrete and the FRP. Based on the result, the temperature when the bond strength of the FRP disappears was evaluated. In addition, a finite element analysis was performed to find a proper method for predicting the temperature variation of the epoxy which is fire-protected with board-type insulation during the increase of external temperature. As a result of the test, despite the same fire-protection, NSM specimens were able to resist 1.54–2.08 times higher temperature than EB specimens. In the design of fire-protection of FRP system with the board-type insulation, it is necessary to consider the transfer from sides as well as the face with FRP. If there is no insulation of FP boards on the sides, the epoxy easily reaches its critical temperature by the heat penetrated to the sides, and increasing the thickness of the FP board alone for the face with FRP does not increase the fire-resistance capacity. As a result of the FE analysis, the temperature variation at epoxy can be predicted using the analytical approach with the proper thermal properties of FP mortar and board.


2021 ◽  
pp. 161441
Author(s):  
Yuantao Zhao ◽  
Rui Wang ◽  
Yanle Sun ◽  
Lianbo Wang ◽  
Xinfeng Wu ◽  
...  

1994 ◽  
Vol 212-215 ◽  
pp. 241-245 ◽  
Author(s):  
M. Kiritani ◽  
T. Yoshiie ◽  
M. Iseki ◽  
S. Kojima ◽  
K. Hamada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document