Skeletal muscle properties and performance in elite female track athletes

1981 ◽  
Vol 47 (4) ◽  
pp. 355-364 ◽  
Author(s):  
Robert J. Gregor ◽  
V. R. Edgerton ◽  
R. Rozenek ◽  
K. R. Castleman
2010 ◽  
Vol 42 (12) ◽  
pp. 2149-2155 ◽  
Author(s):  
VERENA MATSCHKE ◽  
PETER MURPHY ◽  
ANDREW B. LEMMEY ◽  
PETER MADDISON ◽  
JEANETTE M. THOM

2021 ◽  
Vol 9 (1) ◽  
pp. 13-23
Author(s):  
Janel Bailey ◽  
Rachel Irving ◽  
Paula Dawson ◽  
Dialo-Rudolph Brown ◽  
Eon Campbell

2020 ◽  
Vol 124 (4) ◽  
pp. 418-431
Author(s):  
Turid Mørkøre ◽  
Helena M. Moreno ◽  
Javier Borderías ◽  
Thomas Larsson ◽  
Hege Hellberg ◽  
...  

AbstractThere is an urgent need to find alternative feed resources that can further substitute fishmeal in Atlantic salmon diets without compromising health and food quality, in particular during the finishing feeding period when the feed demand is highest and flesh quality effects are most significant. This study investigates efficacy of substituting a isoprotein (35 %) and isolipid (35 %) low fishmeal diet (FM, 15 %) with Antarctic krill meal (KM, 12 %) during 3 months with growing finishing 2·3 kg salmon (quadruplicate sea cages/diet). Final body weight (3·9 (se 0·04) kg) was similar in the dietary groups, but the KM group had more voluminous body shape, leaner hearts and improved fillet integrity, firmness and colour. Ectopic epithelial cells and focal Ca deposits in intestine were only detected in the FM group. Transcriptome profiling by microarray of livers showed dietary effects on several immune genes, and a panel of structural genes were up-regulated in the KM group, including cadherin and connexin. Up-regulation of genes encoding myosin heavy chain proteins was the main finding in skeletal muscle. Morphology examination by scanning electron microscopy and secondary structure by Fourier transform IR spectroscopy revealed more ordered and stable collagen architecture of the KM group. NEFA composition of skeletal muscle indicated altered metabolism of n-3, n-6 and SFA of the KM group. The results demonstrated that improved health and meat quality in Atlantic salmon fed krill meal were associated with up-regulation of immune genes, proteins defining muscle properties and genes involved in cell contacts and adhesion, altered fatty acid metabolism and fat deposition, and improved gut health and collagen structure.


1977 ◽  
Vol 45 (6) ◽  
pp. 1272-1279 ◽  
Author(s):  
G. Elizondo ◽  
P. B. Addis ◽  
W. E. Rempel ◽  
C. Madero ◽  
A. Antonik

Nutrients ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 46 ◽  
Author(s):  
Maria Gammone ◽  
Graziano Riccioni ◽  
Gaspare Parrinello ◽  
Nicolantonio D’Orazio

The influence of nutrition has the potential to substantially affect physical function and body metabolism. Particular attention has been focused on omega-3 polyunsaturated fatty acids (n-3 PUFAs), which can be found both in terrestrial features and in the marine world. They are responsible for numerous cellular functions, such as signaling, cell membrane fluidity, and structural maintenance. They also regulate the nervous system, blood pressure, hematic clotting, glucose tolerance, and inflammatory processes, which may be useful in all inflammatory conditions. Animal models and cell-based models show that n-3 PUFAs can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that they can influence not only the exercise and the metabolic response of skeletal muscle, but also the functional response for a period of exercise training. In addition, their potential anti-inflammatory and antioxidant activity may provide health benefits and performance improvement especially in those who practice physical activity, due to their increased reactive oxygen production. This review highlights the importance of n-3 PUFAs in our diet, which focuses on their potential healthy effects in sport.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 641 ◽  
Author(s):  
Ana P. Pinto ◽  
Tales S. Vieira ◽  
Bruno B. Marafon ◽  
Gabriela Batitucci ◽  
Elisa M. B. Cabrera ◽  
...  

The present study verified the responses of proteins related to the autophagy pathway after 10 h of fast with resistance exercise and protein ingestion in skeletal muscle and liver samples. The rats were distributed into five experimental groups: control (CT; sedentary and without gavage after fast), exercise immediately (EXE-imm; after fast, rats were submitted to the resistance protocol and received water by gavage immediately after exercise), exercise after 1 h (EXE-1h; after fast, rats were submitted to the resistance protocol and received water by gavage 1 h after exercise), exercise and supplementation immediately after exercise (EXE/Suppl-imm; after fast, rats were submitted to the resistance protocol and received a mix of casein: whey protein 1:1 (w/w) by gavage immediately after exercise), exercise and supplementation 1 h after exercise (EXE/Suppl-1h; after fast, rats were submitted to the resistance protocol and received a mix of casein: whey protein 1:1 (w/w) by gavage 1 h after exercise). In summary, the current findings show that the combination of fasting, acute resistance exercise, and protein blend ingestion (immediately or 1 h after the exercise stimulus) increased the serum levels of leucine, insulin, and glucose, as well as the autophagy protein contents in skeletal muscle, but decreased other proteins related to the autophagic pathway in the liver. These results deserve further mechanistic investigations since athletes are combining fasting with physical exercise to enhance health and performance outcomes.


Sign in / Sign up

Export Citation Format

Share Document