The reduction of the control of movement for manipulation robots from many degrees of freedom to one degree of freedom

1997 ◽  
Vol 83 (4) ◽  
pp. 531-533 ◽  
Author(s):  
V. N. Karpushkin ◽  
A. V. Chernavsky
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3740
Author(s):  
Olafur Oddbjornsson ◽  
Panos Kloukinas ◽  
Tansu Gokce ◽  
Kate Bourne ◽  
Tony Horseman ◽  
...  

This paper presents the design, development and evaluation of a unique non-contact instrumentation system that can accurately measure the interface displacement between two rigid components in six degrees of freedom. The system was developed to allow measurement of the relative displacements between interfaces within a stacked column of brick-like components, with an accuracy of 0.05 mm and 0.1 degrees. The columns comprised up to 14 components, with each component being a scale model of a graphite brick within an Advanced Gas-cooled Reactor core. A set of 585 of these columns makes up the Multi Layer Array, which was designed to investigate the response of the reactor core to seismic inputs, with excitation levels up to 1 g from 0 to 100 Hz. The nature of the application required a compact and robust design capable of accurately recording fully coupled motion in all six degrees of freedom during dynamic testing. The novel design implemented 12 Hall effect sensors with a calibration procedure based on system identification techniques. The measurement uncertainty was ±0.050 mm for displacement and ±0.052 degrees for rotation, and the system can tolerate loss of data from two sensors with the uncertainly increasing to only 0.061 mm in translation and 0.088 degrees in rotation. The system has been deployed in a research programme that has enabled EDF to present seismic safety cases to the Office for Nuclear Regulation, resulting in life extension approvals for several reactors. The measurement system developed could be readily applied to other situations where the imposed level of stress at the interface causes negligible material strain, and accurate non-contact six-degree-of-freedom interface measurement is required.


Three basic models of the intracrystalline sorbed state are discussed: a localized phase, a mobile phase possessing two translational degrees of freedom, and a mobile phase with one translational degree of freedom. The isotherm and entropy of each of these models have been investigated for the ideal phase, and where possible the influence of sorbate-sorbate interactions has been considered. Expressions for the molal and differential entropies of each model are given as a function of sorbate concentration. The method of comparing theoretical isotherms and entropies with experimental observations is outlined.


2014 ◽  
Vol 926-930 ◽  
pp. 2054-2057
Author(s):  
Jun Hui He

This paper proposed customers to participate typology based on three dimensions, which are the customers’ autonomy in the process, the nature of the firm‐customer collaboration, and the stage of the innovation process. Then proposed customers to participate in the type of open innovation framework. Through the static comparative and dynamic evolution simulation found: customers tend to be open to participate in the development of new products pre innovation, the tendency to begin to choose the low participation of degrees of freedom, and ultimately tend to opt for a high degree of freedom to participate.


1983 ◽  
Vol 105 (1) ◽  
pp. 23-27 ◽  
Author(s):  
K. Sugimoto ◽  
J. Duffy

Many kinds of robot arms with five degrees of freedom are widely used in industry for arc welding, spray painting, assembling etc. It is necessary to be able to compute joint displacements when such devices are computer controlled. A solution to this problem is presented and the analysis is illustrated by a numerical example using the most common industrial robot with five axes. Further, special cases are discussed using screw theory.


Author(s):  
Sridhar Kota ◽  
Srinivas Bidare

Abstract A two-degree-of-freedom differential system has been known for a long time and is widely used in automotive drive systems. Although higher degree-of-freedom differential systems have been developed in the past based on the well-known standard differential, the number of degrees-of-freedom has been severely restricted to 2n. Using a standard differential mechanism and simple epicyclic gear trains as differential building blocks, we have developed novel whiffletree-like differential systems that can provide n-degrees of freedom, where n is any integer greater than two. Symbolic notation for representing these novel differentials is also presented. This paper presents a systematic method of deriving multi-degree-of-freedom differential systems, a three and four output differential systems and some of their practical applications.


1969 ◽  
Vol 59 (4) ◽  
pp. 1591-1598
Author(s):  
G. A. McLennan

Abstract An exact method is developed to eliminate the accelerometer error in dynamic response calculations for damped multi-degree of freedom systems. It is shown that the exact responses of a system can be obtained from the approximate responses which are conventionally calculated from an accelerogram. Response calculations were performed for two typical systems with three degrees of freedom for an assumed pseudo-earthquake. The results showed that the approximate responses may contain large errors, and that the correction developed effectively eliminates these errors.


2001 ◽  
Author(s):  
A. Khanicheh ◽  
A. Tehranian ◽  
A. Meghdari ◽  
M. S. Sadeghipour

Abstract This paper presents the kinematics and dynamic modeling of a three-link (3-DOF) underwater manipulator where the effects of hydrodynamic forces are investigated. In our investigation, drag and added mass coefficients are not considered as constants. In contrast, the drag coefficient is a variable with respect to all relative parameters. Experiments were conducted to validate the hydrodynamic model for a one degree-of-freedom manipulator up to a three degrees-of-freedom manipulator. Finally, the numerical and experimental results are compared and thoroughly discussed.


Author(s):  
Andrew E. Potts ◽  
Douglas A. Potts ◽  
Hayden Marcollo ◽  
Kanishka Jayasinghe

The prediction of Vortex-Induced Vibration (VIV) of cylinders under fluid flow conditions depends upon the eddy shedding frequency, conventionally described by the Strouhal Number. The most commonly cited relationship between Strouhal Number and Reynolds Number for circular cylinders was developed by Lienhard [1], whereby the Strouhal Number exhibits a consistent narrow band of about 0.2 (conventional across the sub-critical Re range), with a pronounced hump peaking at about 0.5 within the critical flow regime. The source data underlying this relationship is re-examined, wherein it was found to be predominantly associated with eddy shedding frequency about fixed or stationary cylinders. The pronounced hump appears to be an artefact of the measurement techniques employed by various investigators to detect eddy-shedding frequency in the wake of the cylinder. A variety of contemporary test data for elastically mounted cylinders, with freedom to oscillate under one degree of freedom (i.e. cross flow) and two degrees of freedom (i.e. cross flow and in-line) were evaluated and compared against the conventional Strouhal Number relationship. It is well established for VIV that the eddy shedding frequency will synchronise with the near resonant motions of a dynamically oscillating cylinder, such that the resultant bandwidth of lock-in exhibits a wider range of effective Strouhal Numbers than that reflected in the narrow-banded relationship about a mean of 0.2. However, whilst cylinders oscillating under one degree of freedom exhibit a mean Strouhal Number of 0.2 consistent with fixed/stationary cylinders, cylinders with two degrees of freedom exhibit a much lower mean Strouhal Number of around 0.14–0.15. Data supports the relationship that Strouhal Number does slightly diminish with increasing Reynolds Number. For oscillating cylinders, the bandwidth about the mean Strouhal Number value appears to remain largely consistent. For many practical structures in the marine environment subject to VIV excitation, such as long span, slender risers, mooring lines, pipeline spans, towed array sonar strings, and alike, the long flexible cylinders will respond in two degrees of freedom, where the identified difference in Strouhal Number is a significant aspect to be accounted for in the modelling of its dynamic behaviour.


Author(s):  
Min Mao ◽  
Norman M. Wereley ◽  
Alan L. Browne

Feasibility of a sliding seat utilizing adaptive control of a magnetorheological (MR) energy absorber (MREA) to minimize loads imparted to a payload mass in a ground vehicle for frontal impact speeds as high as 7 m/s (15.7 mph) is investigated. The crash pulse for a given impact speed was assumed to be a rectangular deceleration pulse having a prescribed magnitude and duration. The adaptive control objective is to bring the payload (occupant plus seat) mass to a stop using the available stroke, while simultaneously accommodating changes in impact velocity and occupant mass ranging from a 5th percentile female to a 95th percentile male. The payload is first treated as a single-degree-of-freedom (SDOF) rigid lumped mass, and two adaptive control algorithms are developed: (1) constant Bingham number control, and (2) constant force control. To explore the effects of occupant compliance on adaptive controller performance, a multi-degree-of-freedom (MDOF) lumped mass biodynamic occupant model was integrated with the seat mass. The same controllers were used for both the SDOF and MDOF cases based on SDOF controller analysis because the biodynamic degrees of freedom are neither controllable nor observable. The designed adaptive controllers successfully controlled load-stroke profiles to bring payload mass to rest in the available stroke and reduced payload decelerations. Analysis showed extensive coupling between the seat structures and occupant biodynamic response, although minor adjustments to the control gains enabled full use of the available stroke.


2012 ◽  
Vol 619 ◽  
pp. 325-328
Author(s):  
You Jun Huang ◽  
Ze Lun Li ◽  
Zhi Cheng Huang

A teaching robot with three degree of freedom is designed. The three degrees of freedom are: waist rotation, lifting and stretching of the arm and opening and closing of the gripper. The designs of the main components are: a mobile chassis, parallel rails, horizontal rails and manipulator. The teaching robot designed has the features of low cost, easy to regulation, good repeatability and it has good promotion and application prospects in the field of teaching.


Sign in / Sign up

Export Citation Format

Share Document