Ultimate strength of postbuckling for simply supported rectangular composite thin plates under compression

1998 ◽  
Vol 19 (4) ◽  
pp. 391-397 ◽  
Author(s):  
Zhou Zhulin
2015 ◽  
Vol 15 (07) ◽  
pp. 1540020 ◽  
Author(s):  
Michael Krommer ◽  
Hans Irschik

In the present paper, the geometrically nonlinear behavior of piezoelastic thin plates is studied. First, the governing equations for the electromechanically coupled problem are derived based on the von Karman–Tsien kinematic assumption. Here, the Berger approximation is extended to the coupled piezoelastic problem. The general equations are then reduced to a single nonlinear partial differential equation for the special case of simply supported polygonal edges. The nonlinear equations are approximated by using a problem-oriented Ritz Ansatz in combination with a Galerkin procedure. Based on the resulting equations the buckling and post-buckling behavior of a polygonal simply supported plate is studied in a nondimensional form, where the special geometry of the polygonal plate enters via the eigenvalues of a Helmholtz problem with Dirichlet boundary conditions. Single term as well as multi-term solutions are discussed including the effects of piezoelectric actuation and transverse force loadings upon the solution. Novel results concerning the buckling, snap through and snap buckling behavior are presented.


Author(s):  
Abazar Shamekhi ◽  
Mohammad H. Naei

This study presents the buckling analysis of radially-loaded circular plate with variable thickness made of functionally-graded material. The boundary conditions of the plate is either simply supported or clamped. The stability equations were obtained using energy method based on Love-Kichhoff hypothesis and Sander’s non-linear strain-displacement relation for thin plates. The finite element method is used to determine the critical buckling load. The results obtained show good agreement with known analytical and numerical data. The effects of thickness variation and Poisson’s ratio are investigated by calculating the buckling load. These effects are found not to be the same for simply supported and clamped plates.


2008 ◽  
Vol 33-37 ◽  
pp. 501-506
Author(s):  
Shi Rong Li ◽  
Wen Shan Yu

Based on Brinson’s one-dimensional thermo-mechanical constitutive relations of shape memory alloys and the theory of thin plates in the von Kármán sense, the response of bending of a uniform heated circular plate embedded with SMA fibers in the radial directions and subjected to a uniform distributed mechanical load is studied. The characteristic curves of the central deflection versus temperature rise of the circular plate with both clamped and simply supported boundary conditions are obtained. The numerical results show that, the recovery forces of the pre-strained SMA caused by the phase transformation from martensite to austenite can modify the bending deformation significantly. So, it can be concluded that the bending deformation can be adjusted effectively and actively by embedment of the SMA fibers into the circular plates


2004 ◽  
Vol 1 (1) ◽  
pp. 59 ◽  
Author(s):  
A. A.N. Aljawi

Deformation and failure of thin plates of mild steel were studied under quasi-static and dynamic impact loadings. Particular emphasis was placed on responses of simply supported circular plates subjected to centric orthogonal loadings. The latter comprised loadings due to relatively massive rigid cylindrical strikers with a hemispherical-end as well as a flat-end. The projectile motions featured variable and low impact velocities. Generally, good agreement was found between experimental results and those predicted by finite-element techniques for displacement-time curves and for force histories of the striker. It was concluded that the ABAQUS-based study (both the implicit and the explicit versions) revealed beneficial insights into the impact mechanics of plates by rigid projectiles. 


2015 ◽  
Vol 3 (1) ◽  
pp. 19-29 ◽  
Author(s):  
Thaar Saud Salaman Al-Gasham

      The test results of six reinforced concrete moderate deep beams with embedded PVC pipes are reported. The tests studied the effect of installation of PVC pipe on behavior of reinforced concrete moderate deep beams. The test parameters were the diameters and locations of the pipes. The dimensions of beams were 1000 mm length, 150 mm width and 300mm depth. One beam was constructed without pipe as control and the remaining five had embedded pipes. Four pipe diameters were used: 25.4, 50.8, 76.2, and 101.6 mm and these pipes were inserted longitudinally either at the center of the beams or near the tension reinforcement. The beams were simply supported and tested under central concentrated load up to failure. The test results indicated that, the pipe diameter less than 1/3 of the beam width had limited effect on the capacity and rigidity of beam. For larger pipes, the ultimate strength of beams decreased between 16.7% and 33.3% and the beams stiffness decreased between 103% and 297%.


1956 ◽  
Vol 23 (3) ◽  
pp. 430-436
Author(s):  
R. D. Mindlin ◽  
A. Schacknow ◽  
H. Deresiewicz

Abstract The influence of rotatory inertia and shear deformation on the flexural vibrations of isotropic, rectangular plates is investigated. Three independent families of modes are possible when the edges are simply supported. Coupling of the modes is studied for the case of one pair of parallel edges free and the other pair simply supported. The development of the coupling is traced by means of a solution for elastically supported edges. Special attention is given to the higher modes and frequencies of vibration which are beyond the range of applicability of the classical theory of thin plates.


1955 ◽  
Vol 59 (530) ◽  
pp. 151-152 ◽  
Author(s):  
Hugh L. Cox ◽  
Bertram Klein

Approximate Solutions obtained by the method of collocation are presented for the lowest critical buckling load of an isosceles triangular plate loaded as shown in Fig. 1. Also, the fundamental frequency is given. The base of the triangle is simply supported and the other equal edges are clamped. The usual assumptions regarding the bending of thin plates are made. The governing differential equation for the plate loaded as shown in Fig. 1 is1where D is the plate stiffness, N is axial load per unit length, w is deflection, positive downward, and the quantities a and h are dimensions shown in Fig.1.


Sign in / Sign up

Export Citation Format

Share Document