Spatial variability of n fertilizer application and wheat yield

1990 ◽  
Vol 23 (1) ◽  
pp. 15-23 ◽  
Author(s):  
M. Meirvenne ◽  
G. Hofman ◽  
P. Demyttenaere
Author(s):  
A. Limon-Ortega ◽  
A. Baez-Perez

Abstract Environmental conditions contribute to a large percentage of wheat yield variability. This phenomenon is particularly true in rainfed environments and non-responsive soils to N. However, the effect of P application on wheat is unknown in the absence of N fertilizer application. This study was conducted from 2012 to 2019 in permanent beds established in 2005. Treatments were arranged in a split-plot design and consisted of superimposing three P treatments (foliar, banded and broadcast application) plus a check (0P) within each one of four preceding N treatments (applied from 2005 to 2009). Foliar P generally showed a greater response than granular P treatments even though the soil tests high P (>30 mg/kg). Precipitation estimated for two different growth intervals explained through regression procedures the Years' effect. Seasonal precipitation (224–407 mm) explained variation of relative yield, N harvest index (NHI) and P agronomic efficiency (AE). Reproductive stage precipitation (48–210 mm) explained soil N supply. In dry years, foliar P application improved predicted relative yield 14% and AE 155 kg grain/kg P compared to granular P treatments. Similarly, soil N supply increased 15 kg/ha in dry moisture conditions during the reproductive stage. The NHI consistently improved over the crop seasons. This improvement was relatively larger for 0 kg N/ha. On average, NHI increased from about 0.57 to 0.72%. Normalized difference vegetation index (NDVI) readings at the booting growth stage were negatively associated with NHI. Foliar P in this non-responsive soil to N showed the potential to replace granular P sources. However, the omission of granular P needs to be further studied to estimate the long-term effect on the soil P test.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


2014 ◽  
Vol 94 (2) ◽  
pp. 425-432 ◽  
Author(s):  
R. E. Karamanos ◽  
K. Hanson ◽  
F. C. Stevenson

Karamanos, R., Hanson, K. and Stevenson, F. C. 2014. Nitrogen form, time and rate of application, and nitrification inhibitor effects on crop production. Can. J. Plant Sci. 94: 425–432. Nitrogen management options for anhydrous ammonia (NH3) and urea were compared in a barley–wheat–canola–wheat cropping sequence (2007–2010) at Watrous and Lake Lenore, SK. The treatment design included a factorial arrangement of N fertilizer form (NH3versus urea), nitrification inhibitor application, time of N application (mid-September, mid- to late October, and spring) and four N fertilizer rates (0, 40, 80 and 120 kg ha−1). Anhydrous ammonia applications at 40 kg N ha−1in 2008 (fall) and in 2010 (all times of application) resulted in wheat yield reductions relative to the same applications for urea. For wheat years, yield was reduced for both fall versus spring N fertilizer applications, when no nitrification inhibitor was applied and the inclusion of nitrification inhibitor maintained wheat yield at similar levels across all times of N fertilizer applications, regardless of form. Protein concentration was approximately 2 g kg−1greater with urea compared with NH3at both sites in 2008 and only at Watrous in 2010. Also, early versus late fall N fertilizer applications consistently increased N concentration of grain only for the 40 and/or 80 kg N ha−1rates. Effects of nitrification inhibitor on N concentration were not frequent and appeared to be minimal. Urea had greater agronomic efficiency (AE) than NH3at the lower N fertilizer rates. The nitrification inhibitor had a positive effect on wheat AE only for early fall N fertilizer applications. It can be concluded that for maximum yields NH3or urea will be suitable if applied at rates of 80 kg N ha−1and greater. If N fertilizer is applied at 40 kg N ha−1, especially in fall without inhibitor, urea is better. In terms of protein concentration for wheat, urea seemed to better than NH3and fall was better than spring application.


2001 ◽  
Vol 1 ◽  
pp. 750-757 ◽  
Author(s):  
Stan Daberkow ◽  
Harold Taylor ◽  
Noel Gollehon ◽  
Milt Moravek

Given the societal concern about groundwater pollution from agricultural sources, public programs have been proposed or implemented to change farmer behavior with respect to nutrient use and management. However, few of these programs designed to change farmer behavior have been evaluated due to the lack of detailed data over an appropriate time frame. The Central Platte Natural Resources District (CPNRD) in Nebraska has identified an intensively cultivated, irrigated area with average groundwater nitrate-nitrogen (N) levels about double the EPA’s safe drinking water standard. The CPNRD implemented a joint education and regulatory N management program in the mid-1980s to reduce groundwater N. This analysis reports N use and management, yield, and groundwater nitrate trends in the CPNRD for nearly 3000 continuous-corn fields from 1989 to 1998, where producers faced limits on the timing of N fertilizer application but no limits on amounts. Groundwater nitrate levels showed modest improvement over the 10 years of this analysis, falling from the 1989–1993 average of 18.9 to 18.1 mg/l during 1994–1998. The availability of N in excess of crop needs was clearly documented by the CPNRD data and was related to optimistic yield goals, irrigation water use above expected levels, and lack of adherence to commercial fertilizer application guidelines. Over the 10-year period of this analysis, producers reported harvesting an annual average of 9729 kg/ha, 1569 kg/ha (14%) below the average yield goal. During 1989�1998, producers reported annually applying an average of 162.5 kg/ha of commercial N fertilizer, 15.7 kg/ha (10%) above the guideline level. Including the N contribution from irrigation water, the potential N contribution to the environment (total N available less estimated crop use) was estimated at 71.7 kg/ha. This is an estimate of the nitrates available for denitrification, volatilization, runoff, future soil N, and leaching to groundwater. On average, between 1989–1993 and 1994–1998, producers more closely followed CPNRD N fertilizer recommendations and increased their use of postemerge N applications � an indication of improved synchrony between N availability and crop uptake.


2021 ◽  
Vol 34 (4) ◽  
pp. 824-829
Author(s):  
CAMILA SENO NASCIMENTO ◽  
CAROLINA SENO NASCIMENTO ◽  
ARTHUR BERNARDES CECÍLIO FILHO

ABSTRACT Splitting nitrogen (N) fertilizer application can be an efficient nutrient management technique to improve productivity and plant quality, as well as to reduce the negative environmental impact caused by N losses. In this context, the present study investigated how the management of N affects the agronomic characteristics of field-grown arugula plants. Nine treatments were assessed in a randomized complete block design, in a 4 x 2 + 1 factorial scheme, with three replicates. The evaluated factors were doses of N (60, 120, 180 and 240 kg N ha-1), split N fertilizer applications at side-dress (two and three times) and an additional treatment without a N supply. Maximum height was obtained with the application of 198 kg N ha-1. Nitrate content, fresh mass and productivity increased with increasing N doses. There was no effect of split N fertilizer applications on the characteristics evaluated. Therefore, the supply of 240 kg N ha-1 divided into two portions was considered as the best management strategy.


2003 ◽  
Vol 60 (3) ◽  
pp. 559-564 ◽  
Author(s):  
Edemar Joaquim Corazza ◽  
Michel Brossard ◽  
Takashi MuraokaI ◽  
Maurício Antonio Coelho Filho

Studies on soil phosphorus (P) of low productivity cultivated pastures in Cerrado (Brazilian Savanna) areas and surveys on other possible problems related to P are scarce. The spatial variability of soil phosphorus content of a Rhodic Ferralsol was studied in a low productivity pasture of Brachiaria brizantha (BB) grown for 10 years, without fertilizer application, in an experimental area at Planaltina (GO), Brazil. Soil samplings were performed on a regular grid of 10 by 10 meters, with 98 sampling points before (between tussocks and under tussocks) and after the establishment of the experiment (after fertilizing). On the same grid, forage plants were collected and separated into fractions for N and P content analyses. Soil available phosphate was determined by the resin method (Pr) and complemented by the 32P isotopic exchange kinetics analysis. Descriptive statistical and geostatistical analyses were utilized to describe the spatial variability. The Pr content on soil samples under tussocks presented mean and median values 45% larger than in soil samples taken between tussocks. The higher variation is probably related to the greater concentration of BB roots, soil organic matter content and soil P recycled through the plants tussocks. The spatial variability of Pr in this soil was high especially after fertilizer application. This variable did not present spatial dependence for the regular 10 m sampling. The generated knowledge on P variability of soils under low productivity cultivated pastures revealed problems related to the sampling methodology traditionally utilized and to P application.


Akta Agrosia ◽  
2018 ◽  
Vol 21 (2) ◽  
pp. 55-60
Author(s):  
Marwanto Marwanto ◽  
Nasiroh Nasiroh ◽  
Bambang G. Mucitro ◽  
Merakati Handajaningsih

The beneficial effects of manure on soil properties, growth, and crop productivity have promoted its use for replacing the application of N fertilizer. However, it is not well understood to what extent N fertilizer was able to be substituted by cow manure. Accordingly, this pot experiment aimed to compare the effect of inorganic N fertilizer application alone with that of the combined use of inorganic N fertilizer with cow manure based on the same amount of total N on growth parameters, yield attributes, and nitrogen (N) uptake of black rice. The experiment was conducted under a screen house condition in Agriculture Faculty, Bengkulu University located at 15 meters altitude above sea level during the summer season of 2015. There were six treatments viz. T1 = 100% N from urea + 0% N from cow manure (0.52 g N + 0.00 g cow manure) pot-1, T2 = 80% N from urea  + 20% N from cow manure  (0.42 g N + 9.55 g cow manure) pot-1, T3 = 60% N from urea + 40% N from cow manure (0.31 g N  + 19.10 g cow manure) pot-1, T4 = 40% N from urea + 60% N from cow manure (0.21 g N + 28.65 g cow manure) pot-1, T5 = 20% N from urea + 80% N from cow manure (0.10 g N+ 38.20 g cow manure) pot-1, and T6 = 0% N from urea + 100% N from cow manure (0.00 g N  + 47.75 g cow manure) pot-1. The amount of inorganic N fertilizer in the form of urea and cow manure applied was calculated based on the recommended rate of 115.00 kg ha-1 for N fertilizer and 10.50 ton ha-1 for cow manure. These treatments were arranged in a Completely Randomized Design and repeated three times. The results showed that the treatments significantly (P ?0.005) affected growth parameters as measured by plant height, the number of leaves, fresh shoot weight, fresh root weight, dry shoot weight, dry root weight, yield attributes as determined by the total number of tillers, the total number productive tillers, grain yield per pot, and N uptake. The highest values for all these variables were obtained in the treatment receiving recommended rate of urea only (100% N from urea + 0% N from cow manure as equivalence) and the lowest in the treatment receiving a100% N from cow manure (0% N from urea + 100% N from cow manure). However, combined treatments of cow manure and inorganic N fertilizer such as 80% N from urea  + 20% N from cow manure, 60% N from urea + 40% N from cow manure 40% N from urea + 60% N from cow manure showed a parity statistically with the treatment receiving 100% N from urea only in maintaining the values for all these variables. Overall, the combined use of inorganic N fertilizer (urea) and cow manure as an equivalence promoted growth and yield of black rice by improving N uptake. Keywords: integrated nutrient management, soil chemical property, Nitrogen uptake, combined fertilizer application, black rice


Sign in / Sign up

Export Citation Format

Share Document