The effect of structural defects in quartz crystals on radiation defect formation

Atomic Energy ◽  
1999 ◽  
Vol 87 (2) ◽  
pp. 607-610
Author(s):  
Sh. T. Boboyarova ◽  
Sh. A. Vakhidov ◽  
Zh. D. Ibragimov ◽  
R. T. Turdiev ◽  
O. B. Khushvakov
2019 ◽  
Vol 963 ◽  
pp. 730-733
Author(s):  
Alexander A. Lebedev ◽  
Klavdya S. Davydovskaya ◽  
Vitalii V. Kozlovski ◽  
Oleg Korolkov ◽  
Natalja Sleptsuk ◽  
...  

The influence of 15 MeV proton irradiation temperatures (room temperature (RT) - 700 ° C) on the processes of defect formation in commercially available 4H-SiC JBS structures has been studied. It has been shown that the carrier removal rate does not depend on the irradiation temperature. At the same time, the irradiation temperature affected on the spectrum of introduced radiation defects. The conclusion about the possible influence of SiC crystal lattice structural defects on the processes of radiation defect formation has been made.


1994 ◽  
Vol 132 (4) ◽  
pp. 371-376 ◽  
Author(s):  
A. O. Matkovskii ◽  
D. Yu. Sugak ◽  
Ya. V. Burak ◽  
G. I. Malovichko ◽  
V. G. Grachov

Author(s):  
Ottorino Ori ◽  
Franco Cataldo ◽  
Mihai V. Putz

Recent advances in graphene studies deal with the influence of structural defects on graphene chemical, electrical, magnetic and mechanical properties. Here the complex mechanisms leading to the formation of clusters of vacancies in 2D honeycomb HD lattices are described by a pure topological point of view, aiming to correlate the variation of specific topological invariants, sensible to vacancy concentration, to the structural evolution of the defective networks driven by the topo-thermodynamical Gibbs free energy. Interesting predictions on defect formation mechanisms add details on the topological mechanisms featured by the graphenic structures with defects. Future roles of bondonic particles in defective HD materials are also envisaged.


Crystals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 555 ◽  
Author(s):  
Hadjer Ouaddah ◽  
Maike Becker ◽  
Thècle Riberi-Béridot ◽  
Maria Tsoutsouva ◽  
Vasiliki Stamelou ◽  
...  

To control the final grain structure and the density of structural crystalline defects in silicon (Si) ingots is still a main issue for Si used in photovoltaic solar cells. It concerns both innovative and conventional fabrication processes. Due to the dynamic essence of the phenomena and to the coupling of mechanisms at different scales, the post-mortem study of the solidified ingots gives limited results. In the past years, we developed an original system named GaTSBI for Growth at high Temperature observed by Synchrotron Beam Imaging, to investigate in situ the mechanisms involved during solidification. X-ray radiography and X-ray Bragg diffraction imaging (topography) are combined and implemented together with the running of a high temperature (up to 2073 K) solidification furnace. The experiments are conducted at the European Synchrotron Radiation Facility (ESRF). Both imaging techniques provide in situ and real time information during growth on the morphology and kinetics of the solid/liquid (S/L) interface, as well as on the deformation of the crystal structure and on the dynamics of structural defects including dislocations. Essential features of twinning, grain nucleation, competition, strain building, and dislocations during Si solidification are characterized and allow a deeper understanding of the fundamental mechanisms of its growth.


2014 ◽  
Vol 9 (3) ◽  
Author(s):  
Anatoly Ivanovich Kupchishin ◽  
Evgeniy Vladimirovich Shmygalev ◽  
Tatyana Alexandrovna Shmygaleva ◽  
Almaz Binuruli Jorabayev

1990 ◽  
Vol 202 ◽  
Author(s):  
Tri-Rung Yew ◽  
Rafael Reif

ABSTRACTThis paper investigates the defect formation at the epi/substrate interface and epitaxial layers due to an improper in–situ Ar or Ar/H2 plasma cleaning at 500–800 °C Deposition process was carried out immediately after the in–situ cleaning process by ultralow pressure chemical vapor deposition process (ULPCVD) from SiH4/H2. Characteristics of the defects and their relationship with damage or impurity contaminations at the interface are presented. Finally, an optimum cleaning condition which ensures high quality epitaxial growth is addressed.


2005 ◽  
Vol 20 (12) ◽  
pp. 3368-3373 ◽  
Author(s):  
S.A. Curran ◽  
J.A. Talla ◽  
D. Zhang ◽  
D.L. Carroll

We systematically introduced defects onto the body of multi-walled carbon nanotubes through an acid treatment, and the evolution of these defects was examined by Raman spectroscopy using different excitation wavelengths. The D and D′ modes are most prominent and responsive to defect formation caused by acid treatment and exhibit dispersive behavior upon changing the excitation wavelengths as expected from the double resonance Raman (DRR) mechanism. Several weaker Raman resonances including D″ and L1 (L2) + D′ modes were also observed at the lower excitation wavelengths (633 and 785 nm). In addition, specific structural defects including the typical pentagon-heptagon structure (Stone–Wales defects) were identified by Raman spectroscopy. In a closer analysis we also observed Haeckelite structures, specifically Ag mode response in R5,7 and O5,6,7.


Sign in / Sign up

Export Citation Format

Share Document