Molecular mechanisms regulating motor neuron development and degeneration

1999 ◽  
Vol 19 (3) ◽  
pp. 205-228 ◽  
Author(s):  
Trevor J. Kilpatrick ◽  
Merja Soilu-Hänninen
2020 ◽  
Author(s):  
Adèle Salin-Cantegrel ◽  
Rola Dali ◽  
Jae Woong Wang ◽  
Marielle Beaulieu ◽  
Mira Deshmukh ◽  
...  

ABSTRACTSpinal cord motor neuron diversity and the ensuing variety of motor circuits allow for the processing of elaborate muscular behaviours such as body posture and breathing. Little is known, however, about the molecular mechanisms behind the specification of axial and hypaxial motor neurons controlling postural and respiratory functions respectively. Here we show that the Groucho/TLE (TLE) transcriptional corepressor is a multi-step regulator of axial and hypaxial motor neuron diversification in the developing spinal cord. TLE first promotes axial motor neuron specification at the expense of hypaxial identity by cooperating with non-canonical WNT5A signalling within the motor neuron progenitor domain. TLE further acts during post-mitotic motor neuron diversification to promote axial motor neuron topology and axonal connectivity whilst suppressing hypaxial traits. These findings provide evidence for essential and sequential roles of TLE in the spatial and temporal coordination of events regulating the development of motor neurons influencing posture and controlling respiration.HIGHLIGHTSGroucho/TLE mediates non-canonical WNT signalling in developing motor neuronsNon canonical WNT:TLE pathway regulates thoracic motor neuron diversificationTLE promotes axial while inhibiting hypaxial motor neuron developmentTLE influences developing motor neuron topology and muscle innervationIN BRIEFSalin-Cantegrel et al use in ovo engineered approaches to show that a non-canonical WNT:TLE pathway coordinates temporally and spatially separated elements of motor neuron diversification, repressing hypaxial motor neuron development to promote the axial fate.GRAPHICAL ABSTRACTTLE contribution to the development of thoracic somatic motor columnsProgenitor cells in the ventral pMN domain are exposed to higher concentrations of non-canonical WNTs and express more TLE. Cooperation of non-canonical WNTs and TLE renders ventral pMN progenitors refractory to a respiratory MN fate, thereby contributing to the separation of MMC and RMC MN lineages. Differentiating MNs that maintain high TLE expression also maintain LHX3 expression, adopt axial motor neuron topology and connect to axial muscles. TLE activity in differentiating MMC MNs prevents the acquisition of respiratory MN topology and innervation traits.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 934 ◽  
Author(s):  
Hiroshi Nango ◽  
Yasuhiro Kosuge ◽  
Nana Yoshimura ◽  
Hiroko Miyagishi ◽  
Takanori Kanazawa ◽  
...  

Prostaglandins are a group of physiologically active lipid compounds derived from arachidonic acid. Our previous study has found that prostaglandin E2 promotes neurite outgrowth in NSC-34 cells, which are a model for motor neuron development. However, the effects of other prostaglandins on neuronal differentiation are poorly understood. The present study investigated the effect of prostaglandin D2 (PGD2) on neuritogenesis in NSC-34 cells. Exposure to PGD2 resulted in increased percentages of neurite-bearing cells and neurite length. Although D-prostanoid receptor (DP) 1 and DP2 were dominantly expressed in the cells, BW245C (a DP1 agonist) and 15(R)-15-methyl PGD2 (a DP2 agonist) had no effect on neurite outgrowth. Enzyme-linked immunosorbent assay demonstrated that PGD2 was converted to 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) under cell-free conditions. Exogenously applied 15d-PGJ2 mimicked the effect of PGD2 on neurite outgrowth. GW9662, a peroxisome proliferator-activated receptor–gamma (PPARγ) antagonist, suppressed PGD2-induced neurite outgrowth. Moreover, PGD2 and 15d-PGJ2 increased the protein expression of Islet-1 (the earliest marker of developing motor neurons), and these increases were suppressed by co-treatment with GW9662. These results suggest that PGD2 induces neuritogenesis in NSC-34 cells and that PGD2-induced neurite outgrowth was mediated by the activation of PPARγ through the metabolite 15d-PGJ2.


2018 ◽  
Author(s):  
Catarina Catela ◽  
Edgar Correa ◽  
Jihad Aburas ◽  
Laura Croci ◽  
G. Giacomo Consalez ◽  
...  

ABSTRACTBackgroundMammalian motor circuits display remarkable cellular diversity with hundreds of motor neuron (MN) subtypes innervating hundreds of different muscles. Extensive research on limb muscle-innervating MNs has begun to elucidate the genetic programs that control animal locomotion. In striking contrast, the molecular mechanisms underlying the development of axial muscle-innervating MNs, which control breathing and spinal alignment, are poorly studied.MethodsOur previous studies indicated that the function of the Collier/Olf/Ebf (COE) family of transcription factors (TFs) in axial MN development may be conserved from nematodes to simple chordates. Here, we examine the expression pattern of all four mouse COE family members (mEbf1-mEbf4) in spinal MNs and employ genetic approaches in both nematodes and mice to investigate their function in axial MN development.ResultsWe report that mEbf1 and mEbf2 are expressed in distinct MN clusters (termed “columns”) that innervate different axial muscles. Mouse Ebf1 is expressed in MNs of the hypaxial motor column (HMC), which is necessary for breathing, while mEbf2 is expressed in MNs of the medial motor column (MMC) that control spinal alignment. Our characterization of Ebf2 knock-out mice revealed a requirement for Ebf2 in the differentiation of a subset of MMC MNs, indicating molecular diversity within MMC neurons. Intriguingly, transgenic expression of mEbf1 or mEbf2 can rescue axial MN differentiation and locomotory defects in nematodes (Caenorhabditis elegans) lacking unc-3, the sole C. elegans ortholog of the COE family, suggesting functional conservation among mEbf1, mEbf2 and nematode UNC-3.ConclusionsThese findings support the hypothesis that the genetic programs controlling axial MN development are deeply conserved across species, and further advance our understanding of such programs by revealing an essential role for Ebf2 in mouse axial MNs. Because human mutations in COE ortholgs lead to neurodevelopmental disorders characterized by motor developmental delay, our findings may advance our understanding of these human conditions.


2018 ◽  
Author(s):  
Kimberley N. Babos ◽  
Kate E. Galloway ◽  
Kassandra Kisler ◽  
Madison Zitting ◽  
Yichen Li ◽  
...  

AbstractAlthough cellular reprogramming continues to generate new cell types, reprogramming remains a rare cellular event. The molecular mechanisms that limit reprogramming, particularly to somatic lineages, remain unclear. By examining fibroblast-to-motor neuron conversion, we identify a previously unappreciated dynamic between transcription and replication that determines reprogramming competency. Transcription factor overexpression forces most cells into states that are refractory to reprogramming and are characterized by either hypertranscription with little cell division, or hyperproliferation with low transcription. We identify genetic and chemical factors that dramatically increase the number of cells capable of both hypertranscription and hyperproliferation. Hypertranscribing, hyperproliferating cells reprogram at 100-fold higher, near-deterministic rates. We demonstrate that elevated topoisomerase expression endows cells with privileged reprogramming capacity, suggesting that biophysical constraints limit cellular reprogramming to rare events.


2018 ◽  
Author(s):  
Silas Maniatis ◽  
Tarmo Äijö ◽  
Sanja Vickovic ◽  
Catherine Braine ◽  
Kristy Kang ◽  
...  

AbstractParalysis occurring in amyotrophic lateral sclerosis (ALS) results from denervation of skeletal muscle as a consequence of motor neuron degeneration. Interactions between motor neurons and glia contribute to motor neuron loss, but the spatiotemporal ordering of molecular events that drive these processes in intact spinal tissue remains poorly understood. Here, we use spatial transcriptomics to obtain gene expression measurements of mouse spinal cords over the course of disease, as well as of postmortem tissue from ALS patients, to characterize the underlying molecular mechanisms in ALS. We identify novel pathway dynamics, regional differences between microglia and astrocyte populations at early time-points, and discern perturbations in several transcriptional pathways shared between murine models of ALS and human postmortem spinal cords.One Sentence SummaryAnalysis of the ALS spinal cord using Spatial Transcriptomics reveals spatiotemporal dynamics of disease driven gene regulation.


2019 ◽  
Vol 28 (19) ◽  
pp. 3199-3210 ◽  
Author(s):  
Kevin A Kaifer ◽  
Eric Villalón ◽  
Benjamin S O'Brien ◽  
Samantha L Sison ◽  
Caley E Smith ◽  
...  

Abstract Spinal muscular atrophy (SMA) is a neuromuscular disease caused by deletions or mutations in survival motor neuron 1 (SMN1). The molecular mechanisms underlying motor neuron degeneration in SMA remain elusive, as global cellular dysfunction obscures the identification and characterization of disease-relevant pathways and potential therapeutic targets. Recent reports have implicated microRNA (miRNA) dysregulation as a potential contributor to the pathological mechanism in SMA. To characterize miRNAs that are differentially regulated in SMA, we profiled miRNA levels in SMA induced pluripotent stem cell (iPSC)-derived motor neurons. From this array, miR-23a downregulation was identified selectively in SMA motor neurons, consistent with previous reports where miR-23a functioned in neuroprotective and muscle atrophy-antagonizing roles. Reintroduction of miR-23a expression in SMA patient iPSC-derived motor neurons protected against degeneration, suggesting a potential miR-23a-specific disease-modifying effect. To assess this activity in vivo, miR-23a was expressed using a self-complementary adeno-associated virus serotype 9 (scAAV9) viral vector in the Smn2B/− SMA mouse model. scAAV9-miR-23a significantly reduced the pathology in SMA mice, including increased motor neuron size, reduced neuromuscular junction pathology, increased muscle fiber area, and extended survival. These experiments demonstrate that miR-23a is a novel protective modifier of SMA, warranting further characterization of miRNA dysfunction in SMA.


2016 ◽  
Vol 10 ◽  
pp. JEN.S33122 ◽  
Author(s):  
Saif Ahmad ◽  
Kanchan Bhatia ◽  
Annapoorna Kannan ◽  
Laxman Gangwani

Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease with a high incidence and is the most common genetic cause of infant mortality. SMA is primarily characterized by degeneration of the spinal motor neurons that leads to skeletal muscle atrophy followed by symmetric limb paralysis, respiratory failure, and death. In humans, mutation of the Survival Motor Neuron 1 (SMN1) gene shifts the load of expression of SMN protein to the SMN2 gene that produces low levels of full-length SMN protein because of alternative splicing, which are sufficient for embryonic development and survival but result in SMA. The molecular mechanisms of the (a) regulation of SMN gene expression and (b) degeneration of motor neurons caused by low levels of SMN are unclear. However, some progress has been made in recent years that have provided new insights into understanding of the cellular and molecular basis of SMA pathogenesis. In this review, we have briefly summarized recent advances toward understanding of the molecular mechanisms of regulation of SMN levels and signaling mechanisms that mediate neurodegeneration in SMA.


1998 ◽  
Vol 8 (6) ◽  
pp. 791-799 ◽  
Author(s):  
Philip C Wong ◽  
Jeffrey D Rothstein ◽  
Donald L Price

Sign in / Sign up

Export Citation Format

Share Document