Parallel large scale finite element computations

Author(s):  
Arnd Meyer
Keyword(s):  
Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2760
Author(s):  
Ruiye Li ◽  
Peng Cheng ◽  
Hai Lan ◽  
Weili Li ◽  
David Gerada ◽  
...  

Within large turboalternators, the excessive local temperatures and spatially distributed temperature differences can accelerate the deterioration of electrical insulation as well as lead to deformation of components, which may cause major machine malfunctions. In order to homogenise the stator axial temperature distribution whilst reducing the maximum stator temperature, this paper presents a novel non-uniform radial ventilation ducts design methodology. To reduce the huge computational costs resulting from the large-scale model, the stator is decomposed into several single ventilation duct subsystems (SVDSs) along the axial direction, with each SVDS connected in series with the medium of the air gap flow rate. The calculation of electromagnetic and thermal performances within SVDS are completed by finite element method (FEM) and computational fluid dynamics (CFD), respectively. To improve the optimization efficiency, the radial basis function neural network (RBFNN) model is employed to approximate the finite element analysis, while the novel isometric sampling method (ISM) is designed to trade off the cost and accuracy of the process. It is found that the proposed methodology can provide optimal design schemes of SVDS with uniform axial temperature distribution, and the needed computation cost is markedly reduced. Finally, results based on a 15 MW turboalternator show that the peak temperature can be reduced by 7.3 ∘C (6.4%). The proposed methodology can be applied for the design and optimisation of electromagnetic-thermal coupling of other electrical machines with long axial dimensions.


2013 ◽  
Vol 325-326 ◽  
pp. 476-479 ◽  
Author(s):  
Lin Suo Zeng ◽  
Zhe Wu

This article is based on finite element theory and use ANSYS simulation software to establish electric field calculation model of converter transformer for a ±800kV and make electric field calculation and analysis for valve winding. Converter transformer valve winding contour distribution of electric field have completed in the AC, DC and polarity reversal voltage.


2012 ◽  
Vol 197 ◽  
pp. 139-143
Author(s):  
Hua Bai ◽  
Yi Du Zhang

The change of ambient temperature will cause deformation during the machining process of large-scale aerospace monolithic component. Based on finite element simulation, thermally induced deformation of reinforcing plate is studied in such aspects as reinforcement structure, clamping method and temperature change, and contact function in finite element software is used to simulate the unilateral constraint between workpiece and worktable. The results indicate that reinforcing plate will produce warping deformation due to the change of ambient temperature. Different reinforcement structures and clamping methods have important influence on the deformation positions and degrees, and the deformation is proportional to the temperature change.


2016 ◽  
Vol 28 (14) ◽  
pp. 1886-1904 ◽  
Author(s):  
Vijaya VN Sriram Malladi ◽  
Mohammad I Albakri ◽  
Serkan Gugercin ◽  
Pablo A Tarazaga

A finite element (FE) model simulates an unconstrained aluminum thin plate to which four macro-fiber composites are bonded. This plate model is experimentally validated for single and multiple inputs. While a single input excitation results in the frequency response functions and operational deflection shapes, two input excitations under prescribed conditions result in tailored traveling waves. The emphasis of this article is the application of projection-based model reduction techniques to scale-down the large-scale FE plate model. Four model reduction techniques are applied and their performances are studied. This article also discusses the stability issues associated with the rigid-body modes. Furthermore, the reduced-order models are utilized to simulate the steady-state frequency and time response of the plate. The results are in agreement with the experimental and the full-scale FE model results.


2000 ◽  
Author(s):  
Kerem Ün ◽  
Peter S. Donzelli ◽  
Robert L. Spilker

Abstract Moving contact is fundamental to understanding the mechanical environment of articular cartilage in diarthrodial joints. This study presents a method for approximating three-dimensional (3D) moving contact of biphasic tissue layers using a time-dependent penetration method. This technique has been implemented in a custom finite element solution framework for large-scale simulation that includes a graphical user interface, automatic meshing, and visualization tools. Thus, physiological geometry and load levels can be simulated by this approximate technique. The method is illustrated for canonical and physiological problems representing the glenohumeral joint (GHJ) of the shoulder.


Sign in / Sign up

Export Citation Format

Share Document