The spectral resolution of H

Author(s):  
Werner Müller
Keyword(s):  
1988 ◽  
Vol 102 ◽  
pp. 339-342
Author(s):  
J.M. Laming ◽  
J.D. Silver ◽  
R. Barnsley ◽  
J. Dunn ◽  
K.D. Evans ◽  
...  

AbstractNew observations of x-ray spectra from foil-excited heavy ion beams are reported. By observing the target in a direction along the beam axis, an improvement in spectral resolution, δλ/λ, by about a factor of two is achieved, due to the reduced Doppler broadening in this geometry.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Ayari Takamura ◽  
Daisuke Watanabe ◽  
Rintaro Shimada ◽  
Takeaki Ozawa

Abstract Blood, as a cardinal biological system, is a challenging target for biochemical characterization because of sample complexity and a lack of analytical approaches. To reveal and evaluate aging process of blood compositions is an unexplored issue in forensic analysis, which is useful to elucidate the details of a crime. Here we demonstrate a spectral deconvolution model of near-infrared Raman spectra of bloodstain to comprehensively describe the aging process based on the chemical mechanism, particularly the kinetics. The bloodstain spectra monitored over several months at different temperatures are decomposed into significant spectral components by multivariate calculation. The kinetic schemes of the spectral components are explored and subsequently incorporated into the developed algorithm for the optimal spectral resolution. Consequently, the index of bloodstain aging is proposed, which can be used under different experimental conditions. This work provides a novel perspective on the chemical mechanisms in bloodstain aging and facilitates forensic applications.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 323
Author(s):  
Zhiwei Feng ◽  
Guo Xia ◽  
Rongsheng Lu ◽  
Xiaobo Cai ◽  
Hao Cui ◽  
...  

A unique method to design a high-throughput and high-resolution ultrathin Czerny–Turner (UTCT) spectrometer is proposed. This paper reveals an infrequent design process of spectrometers based on Coddington’s equations, which will lead us to develop a high-performance spectrometer from scratch. The spectrometer is composed of cylindrical elements except a planar grating. In the simulation design, spot radius is sub-pixel size, which means that almost all of the energy is collected by the detector. The spectral resolution is 0.4 nm at central wavelength and 0.75 nm at edge wavelength when the width of slit is chosen to be 25 μm and the groove density is 900 lines/mm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hua-Tian Tu ◽  
An-Qing Jiang ◽  
Jian-Ke Chen ◽  
Wei-Jie Lu ◽  
Kai-Yan Zang ◽  
...  

AbstractUnlike the single grating Czerny–Turner configuration spectrometers, a super-high spectral resolution optical spectrometer with zero coma aberration is first experimentally demonstrated by using a compound integrated diffraction grating module consisting of 44 high dispersion sub-gratings and a two-dimensional backside-illuminated charge-coupled device array photodetector. The demonstrated super-high resolution spectrometer gives 0.005 nm (5 pm) spectral resolution in ultra-violet range and 0.01 nm spectral resolution in the visible range, as well as a uniform efficiency of diffraction in a broad 200 nm to 1000 nm wavelength region. Our new zero-off-axis spectrometer configuration has the unique merit that enables it to be used for a wide range of spectral sensing and measurement applications.


2008 ◽  
Vol 62 (3) ◽  
pp. 323-344 ◽  
Author(s):  
David J. Foulis ◽  
Sylvia Pulmannová

Sign in / Sign up

Export Citation Format

Share Document