scholarly journals Swampland Conjectures for strings and membranes

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Stefano Lanza ◽  
Fernando Marchesano ◽  
Luca Martucci ◽  
Irene Valenzuela

Abstract Swampland criteria like the Weak Gravity Conjecture should not only apply to particles, but also to other lower-codimension charged objects in 4d EFTs like strings and membranes. However, the description of the latter is in general subtle due to their large backreaction effects. In the context of 4d $$ \mathcal{N} $$ N = 1 EFTs, we consider $$ \frac{1}{2} $$ 1 2 BPS strings and membranes which are fundamental, in the sense that they cannot be resolved within the EFT regime. We argue that, if interpreted from the EFT viewpoint, the 4d backreaction of these objects translates into a classical RG flow of their couplings. Constraints on the UV charges and tensions get then translated to constraints on the axionic kinetic terms and scalar potential of the EFT. This uncovers new relations among the Swampland Conjectures, which become interconnected by the physical properties of low-codimension objects. In particular, using that string RG flows describe infinite field distance limits, we show that the WGC for strings implies the Swampland Distance Conjecture. Similarly, WGC-saturating membranes generate a scalar potential satisfying the de Sitter Conjecture.

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Fernando Marchesano ◽  
David Prieto ◽  
Joan Quirant ◽  
Pramod Shukla

Abstract We analyse the flux-induced scalar potential for type IIA orientifolds in the presence of p-form, geometric and non-geometric fluxes. Just like in the Calabi-Yau case, the potential presents a bilinear structure, with a factorised dependence on axions and saxions. This feature allows one to perform a systematic search for vacua, which we implement for the case of geometric backgrounds. Guided by stability criteria, we consider configurations with a particular on-shell F-term pattern, and show that no de Sitter extrema are allowed for them. We classify branches of supersymmetric and non-supersymmetric vacua, and argue that the latter are perturbatively stable for a large subset of them. Our solutions reproduce and generalise previous results in the literature, obtained either from the 4d or 10d viewpoint.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Brice Bastian ◽  
Thomas W. Grimm ◽  
Damian van de Heisteeg

Abstract We study the charge-to-mass ratios of BPS states in four-dimensional $$ \mathcal{N} $$ N = 2 supergravities arising from Calabi-Yau threefold compactifications of Type IIB string theory. We present a formula for the asymptotic charge-to-mass ratio valid for all limits in complex structure moduli space. This is achieved by using the sl(2)-structure that emerges in any such limit as described by asymptotic Hodge theory. The asymptotic charge-to-mass formula applies for sl(2)-elementary states that couple to the graviphoton asymptotically. Using this formula, we determine the radii of the ellipsoid that forms the extremality region of electric BPS black holes, which provides us with a general asymptotic bound on the charge-to-mass ratio for these theories. Finally, we comment on how these bounds for the Weak Gravity Conjecture relate to their counterparts in the asymptotic de Sitter Conjecture and Swampland Distance Conjecture.


2018 ◽  
Vol 33 (34) ◽  
pp. 1850202 ◽  
Author(s):  
N. Messai ◽  
B. Hamil ◽  
A. Hafdallah

In this paper, we study the (1 + 1)-dimensional Dirac equation in the presence of electric field and scalar linear potentials on (anti)-de Sitter background. Using the position representation, the energy spectrum and the corresponding wave functions are exactly obtained.


2015 ◽  
Vol 30 (22) ◽  
pp. 1550133 ◽  
Author(s):  
Eduardo Guendelman ◽  
Emil Nissimov ◽  
Svetlana Pacheva

We propose a new class of gravity-matter theories, describing [Formula: see text] gravity interacting with a nonstandard nonlinear gauge field system and a scalar “dilaton,” formulated in terms of two different non-Riemannian volume-forms (generally covariant integration measure densities) on the underlying space–time manifold, which are independent of the Riemannian metric. The nonlinear gauge field system contains a square-root [Formula: see text] of the standard Maxwell Lagrangian which is known to describe charge confinement in flat space–time. The initial new gravity-matter model is invariant under global Weyl-scale symmetry which undergoes a spontaneous breakdown upon integration of the non-Riemannian volume-form degrees of freedom. In the physical Einstein frame we obtain an effective matter-gauge-field Lagrangian of “k-essence” type with quadratic dependence on the scalar “dilaton” field kinetic term [Formula: see text], with a remarkable effective scalar potential possessing two infinitely large flat regions as well as with nontrivial effective gauge coupling constants running with the “dilaton” [Formula: see text]. Corresponding to each of the two flat regions we find “vacuum” configurations of the following types: (i) [Formula: see text] and a nonzero gauge field vacuum [Formula: see text], which corresponds to a charge confining phase; (ii) [Formula: see text] (“kinetic vacuum”) and ordinary gauge field vacuum [Formula: see text] which supports confinement-free charge dynamics. In one of the flat regions of the effective scalar potential we also find: (iii) [Formula: see text] (“kinetic vacuum”) and a nonzero gauge field vacuum [Formula: see text], which again corresponds to a charge confining phase. In all three cases, the space–time metric is de Sitter or Schwarzschild–de Sitter. Both “kinetic vacuums” (ii) and (iii) can exist only within a finite-volume space region below a de Sitter horizon. Extension to the whole space requires matching the latter with the exterior region with a nonstandard Reissner–Nordström–de Sitter geometry carrying an additional constant radial background electric field. As a result, we obtain two classes of gravitational bag-like configurations with properties, which on one hand partially parallel some of the properties of the solitonic “constituent quark” model and, on the other hand, partially mimic some of the properties of MIT bags in QCD phenomenology.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Nana Cabo Bizet ◽  
Cesar Damian ◽  
Oscar Loaiza-Brito ◽  
Damián Kaloni Mayorga Peña ◽  
J. A. Montañez-Barrera

Abstract We consider Type IIB compactifications on an isotropic torus $$T^6$$T6 threaded by geometric and non geometric fluxes. For this particular setup we apply supervised machine learning techniques, namely an artificial neural network coupled to a genetic algorithm, in order to obtain more than sixty thousand flux configurations yielding to a scalar potential with at least one critical point. We observe that both stable AdS vacua with large moduli masses and small vacuum energy as well as unstable dS vacua with small tachyonic mass and large energy are absent, in accordance to the refined de Sitter conjecture. Moreover, by considering a hierarchy among fluxes, we observe that perturbative solutions with small values for the vacuum energy and moduli masses are favored, as well as scenarios in which the lightest modulus mass is much smaller than the corresponding AdS vacuum scale. Finally we apply some results on random matrix theory to conclude that the most probable mass spectrum derived from this string setup is that satisfying the Refined de Sitter and AdS scale conjectures.


2013 ◽  
Vol 28 (18) ◽  
pp. 1350084 ◽  
Author(s):  
BOBBY E. GUNARA ◽  
FREDDY P. ZEN ◽  
FIKI T. AKBAR ◽  
AGUS SUROSO ◽  
ARIANTO

In this paper, we study several aspects of extremal spherical symmetric black hole solutions of four-dimensional N = 1 supergravity coupled to vector and chiral multiplets with the scalar potential turned on. In the asymptotic region, the complex scalars are fixed and regular which can be viewed as the critical points of the black hole and the scalar potentials with vanishing scalar charges. It follows that the asymptotic geometries are of a constant and nonzero scalar curvature which are generally not Einstein. These spaces could also correspond to the near horizon geometries which are the product spaces of a two anti-de Sitter surface and the two sphere if the value of the scalars in both regions coincide. In addition, we prove the local existence of nontrivial radius dependent complex scalar fields which interpolate between the horizon and the asymptotic region. We finally give some simple ℂn-models with both linear superpotential and gauge couplings.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
M Dehghani ◽  
M Badpa

Abstract The coupled scalar, electromagnetic, and gravitational field equations of Einstein–dilaton gravity theory have been solved in a three-dimensional energy-dependent spacetime and in the presence of power-law nonlinear electrodynamics. The scalar potential is written as the linear combination of two exponential functions, and two families of three-dimensional dilatonic black hole solutions have been introduced which indicate the impacts of rainbow functions on the spacetime geometry. Through consideration of curvature scalars, it has been found that the asymptotic behavior of the solutions is neither flat nor anti-de Sitter. It has been illustrated that, with a suitable choice of parameters, the solutions can produce the two-horizon, extreme and naked singularity black holes. By calculating the black hole charge, mass, entropy, temperature, and electric potential, it has been proved that they fulfill the standard form of the first law of black hole thermodynamics. The thermodynamic stability of the black holes has been analyzed by utilizing the canonical and grand canonical ensembles and noting the signature of the black hole heat capacity and Gibbs free energy of the black holes. The points of type-1, type-2, and Hawking–Page phase transitions and the ranges at which the black holes are locally or globally stable have been determined. The geometrical thermodynamics of the black holes has been studied by use of different thermodynamic metrics, and the results of different approaches have been compared.


2018 ◽  
Vol 168 ◽  
pp. 08005
Author(s):  
Maurice H.P.M. van Putten

The H0-tension problem poses a confrontation of dark energy driving latetime cosmological expansion measured by the Hubble parameter H(z) over an extended range of redshifts z. Distinct values H0 ≃ 73 km s–1 Mpcs–1 and H0 ≃ 68 km s–1 Mpcs–1 obtain from surveys of the Local Universe and, respectively, ΛCBM analysis of the CMB. These are representative of accelerated expansion with H′(0) ≃ 0 by [see formula in PDF] and, respectively, H′(0) > 0 in ΛCDM, where [see formula in PDF] is a fundamental frequency of the cosmological horizon in a Friedmann-Robertson-Walker universe with deceleration parameter q(z) = -1 + (1+z)H–1 H′(z). Explicit solution H(z) = H0 [see formula in PDF] and, respectively, H(z) = H0[see formula in PDF] are here compared with recent data on H(z) over 0 ≲ z ≲ 2.The first is found to be free of tension with H0 from local surveys, while the latter is disfavored at 2:7σ A further confrontation obtains in galaxy dynamics by a finite sensitivity of inertia to background cosmology in weak gravity, putting an upper bound of m ≲ 10–30 eV on the mass of dark matter. A C0 onset to weak gravity at the de Sitter scale of acceleration adS = cH(z), where c denotes the velocity of light, can be seen in galaxy rotation curves covering 0 ≲ z ≲ 2 Weak gravity in galaxy dynamics hereby provides a proxy for cosmological evolution.


Author(s):  
Ignatios Antoniadis ◽  
Karim Benakli

The study of de-Sitter Reissner–Nordstrøm black holes allows us to uncover a Weak Gravity Conjecture in de-Sitter space. It states that for a given mass [Formula: see text] there should be a state with a charge [Formula: see text] bigger than a minimal value [Formula: see text], depending on the mass and the de-Sitter radius [Formula: see text], in Planck units. This reproduces the well-known flat space–time result [Formula: see text] in the large radius limit (large [Formula: see text]). In the highly curved de-Sitter space, ([Formula: see text]) [Formula: see text] behaves as [Formula: see text]. Finally, we discuss the case of backgrounds from gauged R-symmetry in [Formula: see text] supergravity. This paper is based on [I. Antoniadis and K. Benakli, Fortsch. Phys. 68, 2000054 (2020), arXiv:2006.12512 [hep-th]].


Sign in / Sign up

Export Citation Format

Share Document