scholarly journals Near-extremal fluid mechanics

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Upamanyu Moitra ◽  
Sunil Kumar Sake ◽  
Sandip P. Trivedi

Abstract We analyse near-extremal black brane configurations in asymptotically AdS4 spacetime with the temperature T, chemical potential μ, and three-velocity uν, varying slowly. We consider a low-temperature limit where the rate of variation is much slower than μ, but much bigger than T. This limit is different from the one considered for conventional fluid-mechanics in which the rate of variation is much smaller than both T, μ. We find that in our limit, as well, the Einstein-Maxwell equations can be solved in a systematic perturbative expansion. At first order, in the rate of variation, the resulting constitutive relations for the stress tensor and charge current are local in the boundary theory and can be easily calculated. At higher orders, we show that these relations become non-local in time but the perturbative expansion is still valid. We find that there are four linearised modes in this limit; these are similar to the hydrodynamic modes found in conventional fluid mechanics with the same dispersion relations. We also study some linearised time independent perturbations exhibiting attractor behaviour at the horizon — these arise in the presence of external driving forces in the boundary theory.

2019 ◽  
Author(s):  
Jose Julio Gutierrez Moreno ◽  
Marco Fronzi ◽  
Pierre Lovera ◽  
alan O'Riordan ◽  
Mike J Ford ◽  
...  

<p></p><p>Interfacial metal-oxide systems with ultrathin oxide layers are of high interest for their use in catalysis. In this study, we present a density functional theory (DFT) investigation of the structure of ultrathin rutile layers (one and two TiO<sub>2</sub> layers) supported on TiN and the stability of water on these interfacial structures. The rutile layers are stabilized on the TiN surface through the formation of interfacial Ti–O bonds. Charge transfer from the TiN substrate leads to the formation of reduced Ti<sup>3+</sup> cations in TiO<sub>2.</sub> The structure of the one-layer oxide slab is strongly distorted at the interface, while the thicker TiO<sub>2</sub> layer preserves the rutile structure. The energy cost for the formation of a single O vacancy in the one-layer oxide slab is only 0.5 eV with respect to the ideal interface. For the two-layer oxide slab, the introduction of several vacancies in an already non-stoichiometric system becomes progressively more favourable, which indicates the stability of the highly non-stoichiometric interfaces. Isolated water molecules dissociate when adsorbed at the TiO<sub>2</sub> layers. At higher coverages the preference is for molecular water adsorption. Our ab initio thermodynamics calculations show the fully water covered stoichiometric models as the most stable structure at typical ambient conditions. Interfacial models with multiple vacancies are most stable at low (reducing) oxygen chemical potential values. A water monolayer adsorbs dissociatively on the highly distorted 2-layer TiO<sub>1.75</sub>-TiN interface, where the Ti<sup>3+</sup> states lying above the top of the valence band contribute to a significant reduction of the energy gap compared to the stoichiometric TiO<sub>2</sub>-TiN model. Our results provide a guide for the design of novel interfacial systems containing ultrathin TiO<sub>2</sub> with potential application as photocatalytic water splitting devices.</p><p></p>


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Joonho Kim ◽  
Seok Kim ◽  
Jaewon Song

Abstract We study the asymptotic behavior of the (modified) superconformal index for 4d $$ \mathcal{N} $$ N = 1 gauge theory. By considering complexified chemical potential, we find that the ‘high-temperature limit’ of the index can be written in terms of the conformal anomalies 3c − 2a. We also find macroscopic entropy from our asymptotic free energy when the Hofman-Maldacena bound 1/2 < a/c < 3/2 for the interacting SCFT is satisfied. We study $$ \mathcal{N} $$ N = 1 theories that are dual to AdS5 × Yp,p and find that the Cardy limit of our index accounts for the Bekenstein-Hawking entropy of large black holes.


2021 ◽  
Vol 11 (15) ◽  
pp. 6736
Author(s):  
Ong Heo ◽  
Yeowon Yoon ◽  
Jinung Do

When underground space requires excavation in areas below the water table, the foundation system suffers from buoyancy, which leads to the uplifting of the superstructure. A deep foundation system can be used; however, in cases where a hard layer is encountered, high driving forces and corresponding noises cause civil complaints in urban areas. Micropiles can be an effective alternative option, due to their high performance despite a short installation depth. Pressurized grouting is used with a packer to induce higher interfacial properties between micropile and soil. In this study, the field performance of micropiles installed using gravitational grouting or pressure-grouted using either a geotextile packer or rubber packer was comparatively evaluated by tension and creep tests. Micropiles were installed using pressure grouting in weak and fractured zones. As results, the pressure-grouted micropiles showed more stable and stronger behaviors than ones installed using the gravitational grouting. Moreover, the pressure-grouted micropile installed using the rubber packer showed better performance than the one using the geotextile packer.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
M. Asadi ◽  
H. Soltanpanahi ◽  
F. Taghinavaz

Abstract We investigate the time-dependent perturbations of strongly coupled $$ \mathcal{N} $$ N = 4 SYM theory at finite temperature and finite chemical potential with a second order phase transition. This theory is modelled by a top-down Einstein-Maxwell-dilaton description which is a consistent truncation of the dimensional reduction of type IIB string theory on AdS5×S5. We focus on spin-1 and spin-2 sectors of perturbations and compute the linearized hydrodynamic transport coefficients up to the third order in gradient expansion. We also determine the radius of convergence of the hydrodynamic mode in spin-1 sector and the lowest non-hydrodynamic modes in spin-2 sector. Analytically, we find that all the hydrodynamic quantities have the same critical exponent near the critical point θ = $$ \frac{1}{2} $$ 1 2 . Moreover, we propose a relation between symmetry enhancement of the underlying theory and vanishing of the only third order hydrodynamic transport coefficient θ1, which appears in the shear dispersion relation of a conformal theory on a flat background.


2004 ◽  
Vol 824 ◽  
Author(s):  
Allan T. Emrén ◽  
Anna-Maria Jacobsson

AbstractIn performance assessments, sorption of radionuclides dissolved in groundwater is mostly handled by the use of fixed Kd values. It has been well known that this approach is unsatisfying. Only during the last few years, however, tools have become available that make it possible to predict the actual Kd value in an aqueous solution that differs from the one in which the sorption properties were measured.One such approach is surface complexation (SC) that gives a detailed knowledge of the sorption properties. In SC, one tries to find what kinds of sorbed species are available on the surface and the thermodynamics for their formation from species in the bulk aqueous solution. Recently, a different approach, surface phase method (SP), has been developed. In SP, a thin layer including the surface is treated as a separate phase. In the bulk aqueous solution, the surface phase is treated as a virtual component, and from the chemical potential of this component, the sorption properties can be found.In the paper, we compare advantages and disadvantages of the two kinds of models. We also investigate the differences in predicted sorption properties of a number of radionuclides (Co, Np, Th and U). Furthermore, we discuss under which circumstances, one approach or the other is preferable.


2010 ◽  
Vol 22 (03) ◽  
pp. 233-303 ◽  
Author(s):  
J.-B BRU ◽  
W. DE SIQUEIRA PEDRA

The thermodynamic impact of the Coulomb repulsion on s-wave superconductors is analyzed via a rigorous study of equilibrium and ground states of the strong coupling BCS-Hubbard Hamiltonian. We show that the one-site electron repulsion can favor superconductivity at fixed chemical potential by increasing the critical temperature and/or the Cooper pair condensate density. If the one-site repulsion is not too large, a first or a second order superconducting phase transition can appear at low temperatures. The Meißner effect is shown to be rather generic but coexistence of superconducting and ferromagnetic phases is also shown to be feasible, for instance, near half-filling and at strong repulsion. Our proof of a superconductor-Mott insulator phase transition implies a rigorous explanation of the necessity of doping insulators to create superconductors. These mathematical results are consequences of "quantum large deviation" arguments combined with an adaptation of the proof of Størmer's theorem [1] to even states on the CAR algebra.


2021 ◽  
Author(s):  
Renan Silva Santos ◽  
Maria A. G. Martinez

Abstract A multilayer structure using graphene on a silicon waveguide is introduced and optimized to operate as a tunable TE-pass polarizer at 1310 nm or 1550 nm, a tunable TE/TM modulator at 1310 nm or 1550 nm, and a dual operation as a modulator at 1310 nm and a polarizer at 1550 nm. The analysis is based on the waveguide structure modal loss, the 2D graphene layer optical properties and its dependency on the applied chemical potential. The optimization is done by varying waveguide height and choosing the one with best figures of merit for each individual case and for the dual operation, the value that causes the least impairment overall is chosen. The polarizer tunability at 1310 nm or 1550 nm is attainable setting the applied chemical potential range from 0.55–0.65 eV or 0.45–0.55 eV, respectively. For the modulator tunability at 1310 nm or 1550 nm, the applied chemical potential range from 0.45–0.55 eV or 0.35–0.45 eV, respectively. The optimized waveguide silicon layer around 210 nm guarantees an extinction ratio better than 0.056 dB/µm for the polarizer and better than 0.045/0.133 dB/µm for the TE/TM modulator at 1310 nm, and better than 0.034 dB/µm for polarizer and better than 0.053/0.137 dB/µm for TE/TM modulator at 1550 nm. Further, the setting the chemical potential range at 0.45–0.55 eV, allows dual polarizer-modulator operation, with the modulator operating at 1310 nm and the polarizer operating at 1550 nm, presenting an extinction ratio better than 0.045 dB/µm and 0.034 dB/µm respectively. In all situations analyzed, insertion loss is lower than 0.007 dB/µm. The advantage of the structure in comparison with other similar devices relies in its versatility to operate as both modulator and polarizer, in different wavelengths, via a proper choosing of the applied chemical potential.


Author(s):  
Luiz Antonio Joia

In 1994, the Sloan School of Management at MIT inaugurated a multi-year research and education initiative called “Inventing the Organizations of the 21st Century”, headed by Thomas Malone, Director, Center for Coordination Science. One of the key activities of this initiative has been developing a series of coherent scenarios of possible future organizations. The Scenario Working Group considered a wide variety of possible driving forces, major uncertainties, and logics that might shape 21st century organizations. Two scenarios were then created addressing the size and the modus-operandi of the future organizations: “Small Companies, Large Networks”, as the one found in Northern Italy (Textile Production in the Prato region of Italy), and “Virtual Countries”, as more mergers and acquisitions are turning up worldwide (e.g., Exxon and Mobil) (Laubacher & Malone, 1997).


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2199
Author(s):  
Markus Scholle

Fluid mechanics has emerged as a basic concept for nearly every field of technology. Despite there being a well-developed mathematical theory and available commercial software codes, the computation of solutions of the governing equations of motion is still challenging, especially due to the nonlinearity involved, and there are still open questions regarding the underlying physics of fluid flow, especially with respect to the continuum hypothesis and thermodynamic local equilibrium. The aim of this Special Issue is to reference recent advances in the field of fluid mechanics both in terms of developing sophisticated mathematical methods for finding solutions of the equations of motion, on the one hand, and on novel approaches to the physical modelling beyond the continuum hypothesis and thermodynamic local equilibrium, on the other.


2000 ◽  
Vol 6 (S2) ◽  
pp. 386-387
Author(s):  
N. Ravishankar ◽  
M.T. Johnson ◽  
C. Barry Carter

The migration of grain boundaries in polycrystalline materials can occur under a variety of driving forces. Grain growth in a single-phase material and Ostwald ripening of a second phase are two common processes involving boundary migration. The mass transport in each of these cases can be related to a chemical potential difference across the grains; due to curvature in the former case and due to a difference in the chemistry in the latter case. The mass transport across grains controls the densification process during sintering. In the case of liquid-phase sintering (LPS), a liquid film may be present at the grain boundaries which results in an enhanced mass transport between grains leading to faster densification. Hence, in LPS, it is important to understand mass transport across and along a boundary containing a liquid film. The use of bicrystals and tricrystals with glass layers in the boundary can provide a controlled geometry by which to study this phenomenon.


Sign in / Sign up

Export Citation Format

Share Document