scholarly journals Comparative Study of the Field Performances of Pressure-Grouted Micropiles Using Gravity and Packers

2021 ◽  
Vol 11 (15) ◽  
pp. 6736
Author(s):  
Ong Heo ◽  
Yeowon Yoon ◽  
Jinung Do

When underground space requires excavation in areas below the water table, the foundation system suffers from buoyancy, which leads to the uplifting of the superstructure. A deep foundation system can be used; however, in cases where a hard layer is encountered, high driving forces and corresponding noises cause civil complaints in urban areas. Micropiles can be an effective alternative option, due to their high performance despite a short installation depth. Pressurized grouting is used with a packer to induce higher interfacial properties between micropile and soil. In this study, the field performance of micropiles installed using gravitational grouting or pressure-grouted using either a geotextile packer or rubber packer was comparatively evaluated by tension and creep tests. Micropiles were installed using pressure grouting in weak and fractured zones. As results, the pressure-grouted micropiles showed more stable and stronger behaviors than ones installed using the gravitational grouting. Moreover, the pressure-grouted micropile installed using the rubber packer showed better performance than the one using the geotextile packer.

2021 ◽  
Vol 13 (16) ◽  
pp. 8789
Author(s):  
Giovanni Bianco ◽  
Barbara Bonvini ◽  
Stefano Bracco ◽  
Federico Delfino ◽  
Paola Laiolo ◽  
...  

As reported in the “Clean energy for all Europeans package” set by the EU, a sustainable transition from fossil fuels towards cleaner energy is necessary to improve the quality of life of citizens and the livability in cities. The exploitation of renewable sources, the improvement of energy performance in buildings and the need for cutting-edge national energy and climate plans represent important and urgent topics to be faced in order to implement the sustainability concept in urban areas. In addition, the spread of polygeneration microgrids and the recent development of energy communities enable a massive installation of renewable power plants, high-performance small-size cogeneration units, and electrical storage systems; moreover, properly designed local energy production systems make it possible to optimize the exploitation of green energy sources and reduce both energy supply costs and emissions. In the present paper, a set of key performance indicators is introduced in order to evaluate and compare different energy communities both from a technical and environmental point of view. The proposed methodology was used in order to assess and compare two sites characterized by the presence of sustainable energy infrastructures: the Savona Campus of the University of Genoa in Italy, where a polygeneration microgrid has been in operation since 2014 and new technologies will be installed in the near future, and the SPEED2030 District, an urban area near the Campus where renewable energy power plants (solar and wind), cogeneration units fed by hydrogen and storage systems are planned to be installed.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 163
Author(s):  
Masaru Ogura ◽  
Yumiko Shimada ◽  
Takeshi Ohnishi ◽  
Naoto Nakazawa ◽  
Yoshihiro Kubota ◽  
...  

This paper introduces a joint industries–academia–academia research project started by researchers in several automobile companies and universities working on a single theme. Our first target was to find a zeolite for NH3-SCR, that is, zeolite mining. Zeolite AFX, having the same topology of SSZ-16, was found to be the one of the zeolites. SSZ-16 can be synthesized by using an organic structure-directing agent such as 1,1′-tetramethylenebis(1-azonia-4-azabicyclo[2.2.2]octane; Dab-4, resulting in the formation of Al-rich SSZ-16 with Si/Al below five. We found that AFX crystallized by use of N,N,N′,N′-tetraethylbicyclo[2.2.2]oct-7-ene-2,3:5,6-dipyrrolidinium ion, called TEBOP in this study, had the same analog as SSZ-16 having Si/Al around six and a smaller particle size than SSZ-16. The AFX demonstrated a high performance for NH3-SCR as the zeolitic support to load a large number of divalent Cu ionic species with high hydrothermal stability.


Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 2269-2282
Author(s):  
D Mester ◽  
Y Ronin ◽  
D Minkov ◽  
E Nevo ◽  
A Korol

Abstract This article is devoted to the problem of ordering in linkage groups with many dozens or even hundreds of markers. The ordering problem belongs to the field of discrete optimization on a set of all possible orders, amounting to n!/2 for n loci; hence it is considered an NP-hard problem. Several authors attempted to employ the methods developed in the well-known traveling salesman problem (TSP) for multilocus ordering, using the assumption that for a set of linked loci the true order will be the one that minimizes the total length of the linkage group. A novel, fast, and reliable algorithm developed for the TSP and based on evolution-strategy discrete optimization was applied in this study for multilocus ordering on the basis of pairwise recombination frequencies. The quality of derived maps under various complications (dominant vs. codominant markers, marker misclassification, negative and positive interference, and missing data) was analyzed using simulated data with ∼50-400 markers. High performance of the employed algorithm allows systematic treatment of the problem of verification of the obtained multilocus orders on the basis of computing-intensive bootstrap and/or jackknife approaches for detecting and removing questionable marker scores, thereby stabilizing the resulting maps. Parallel calculation technology can easily be adopted for further acceleration of the proposed algorithm. Real data analysis (on maize chromosome 1 with 230 markers) is provided to illustrate the proposed methodology.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Shruti Vashist ◽  
M. K. Soni ◽  
P. K. Singhal

Rotman lenses are the beguiling devices used by the beamforming networks (BFNs). These lenses are generally used in the radar surveillance systems to see targets in multiple directions due to its multibeam capability without physically moving the antenna system. Now a days these lenses are being integrated into many radars and electronic warfare systems around the world. The antenna should be capable of producing multiple beams which can be steered without changing the orientation of the antenna. Microwave lenses are the one who support low-phase error, wideband, and wide-angle scanning. They are the true time delay (TTD) devices producing frequency independent beam steering. The emerging printed lenses in recent years have facilitated the advancement of designing high performance but low-profile, light-weight, and small-size and networks (BFNs). This paper will review and analyze various design concepts used over the years to improve the scanning capability of the lens developed by various researchers.


2014 ◽  
Vol 555 ◽  
pp. 665-672
Author(s):  
Adriana Şerban Târgoveţ ◽  
Dragoş Ionescu-Bondoc

During swimming competitions starting from the block-start platform, a potential hypothesis was noticed, through an active multimodal process, which can make the swimming start efficient, especially in the case of sprint races, by improving the propulsive force parameters of the inferior limbs. The swimming start research from interdisciplinary perspective: biomechanical, kinematic, informational and statistical can consolidate and improve the specific technique in accordance with the abilities and psycho-motor qualities of the swimmers. The present study is based on an experiment where the spatial-temporal and kinematic parameters were processed with the help of a Dartfish program. The evolution of parameters is researched as a result of a motor training program with the purpose to increase the propulsive force off the block-start. The improvement of spatial-temporal parameters influences the performance and evolution of technical parameters. Initial and final recordings were made on an MLD Station Evo5 and MLD software MuskelLeistungs Diagnose, fromSPSport, SPSportdiagnosegeräte, in order to evaluate the force, the power and the propulsive force. The argumentation of the experimental research is based on the statement: “the spatial characteristics of the motions and actions can be studied for themselves as parameters, characteristics or as a reference method for defining other characteristics, such as velocity or push-off force [1]. The main purpose of this study is to identify the influences of the specific start training upon the force improvement and kick power of the support foot from the block-start, during the classic track start. Given that the track start technique is the same as the one of the kick start executed from the international block-start of Omega, OSB11, developed in 2009, one assumes that the improvement of the classic track start leads by default to the improvement of the kick start. Lack of training to practice this type of start leads to deficient use during competitions, thus obtaining poor performances. There are no kick block-starts in Romania in order to train high performance athletes participating in international competitions and as a consequence, poor results are obtained at sprint races. One assumes that training for this type of start can be succesfully made only from a block-start similar to the kick one. The block-start model adapted by us under the same biomechanical conditions as the ones of the international kick start, is called “athletic kick”. The training specific to the kick start is carried out only with the optimum use of the kick block-start, the reasons for this being presented by N, Houel, A. Charliac, JL.Rey, Phellardin the paper: “How the swimmer could improve his track start using new Olympic plot” [2].


2021 ◽  
Author(s):  
Vikrant Wagle ◽  
Abdullah Yami ◽  
Michael Onoriode ◽  
Jacques Butcher ◽  
Nivika Gupta

Abstract The present paper describes the results of the formulation of an acid-soluble low ECD organoclay-free invert emulsion drilling fluid formulated with acid soluble manganese tetroxide and a specially designed bridging package. The paper also presents a short summary of field applications to date. The novel, non-damaging fluid has superior rheology resulting in lower ECD, excellent suspension properties for effective hole cleaning and barite-sag resistance while also reducing the risk of stuck pipe in high over balance applications. 95pcf high performance invert emulsion fluid (HPIEF) was formulated using an engineered bridging package comprising of acid-soluble bridging agents and an acid-soluble weighting agent viz. manganese tetroxide. The paper describes the filtration and rheological properties of the HPIEF after hot rolling at 300oF. Different tests such as contamination testing, sag-factor analysis, high temperature-high pressure rheology measurements and filter-cake breaking studies at 300oF were performed on the HPIEF. The 95pcf fluid was also subjected to particle plugging experiments to determine the invasion characteristics and the non-damaging nature of the fluids. The 95pcf HPIEF exhibited optimal filtration properties at high overbalance conditions. The low PV values and rheological profile support low ECDs while drilling. The static aging tests performed on the 95pcf HPIEF resulted in a sag factor of less than 0.53, qualifying the inherent stability for expected downhole conditions. The HPIEF demonstrated resilience to contamination testing with negligible change in properties. Filter-cake breaking experiments performed using a specially designed breaker fluid system gave high filter-cake breaking efficiency. Return permeability studies were performed with the HPIEF against synthetic core material, results of which confirmed the non-damaging design of the fluid. The paper thus demonstrates the superior performance of the HPIEF in achieving the desired lab and field performance.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 877 ◽  
Author(s):  
Vagner Gobbi ◽  
Silvio Gobbi ◽  
Danieli Reis ◽  
Jorge Ferreira ◽  
José Araújo ◽  
...  

Superalloys are used primarily for the aerospace, automotive, and petrochemical industries. These applications require materials with high creep resistance. In this work, evaluation of creep resistance and microstructural characterization were carried out at two new nickel intermediate content alloys for application in aerospace industry and in high performance valves for automotive applications (alloys VAT 32 and VAT 36). The alloys are based on a high nickel chromium austenitic matrix with dispersion of intermetallic L12 and phases containing different (Nb,Ti)C carbides. Creep tests were performed at constant load, in the temperature range of 675–750 °C and stress range of 500–600 MPa. Microstructural characterization and failure analysis of fractured surfaces of crept samples were carried out with optical and scanning electron microscopy with EDS. Phases were identified by Rietveld refinement. The results showed that the superalloy VAT 32 has higher creep resistance than the VAT 36. The superior creep resistance of the alloy VAT 32 is related to its higher fraction of carbides (Nb,Ti)C and intermetallic L12 provided by the amount of carbon, titanium, and niobium in its chemical composition and subsequent heat treatment. During creep deformation these precipitates produce anchoring effect of grain boundaries, hindering relative slide between grains and therefore inhibiting crack formation. These volume defects act also as obstacles to dislocation slip and climb, decreasing the creep rate. Failure analysis of surface fractures of crept samples showed intergranular failure mechanism at crack origin for both alloys VAT 36 and VAT 32. Intergranular fracture involves nucleation, growth, and subsequent binding of voids. The final fractured portion showed transgranular ductile failure, with dimples of different shapes, generated by the formation and coalescence of microcavities with dissimilar shape and sizes. The occurrence of a given creep mechanism depends on the test conditions. At creep tests of VAT 32 and VAT 36, for lower stresses and higher temperature, possible dislocation climb over carbides and precipitates would prevail. For higher stresses and intermediate temperatures shear mechanisms involving stacking faults presumably occur over a wide range of experimental conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Manuel Romana ◽  
Marilo Martin-Gasulla ◽  
Ana T. Moreno

Most of the rural transportation system is composed of two-lane highways, and many of them serve as the primary means for rural access to urban areas and freeways. In some highways, traffic volumes can be not high enough to justify a four-lane highway but higher than can be served by isolated passing lanes, or can present high number of head-on collisions. In those conditions, 2 + 1 highways are potentially applicable. This type of highway is used to provide high-performance highways as intermediate solution between the common two-lane highway and the freeway. Successful experiences reported in Germany, Sweden, Finland, Poland, or Texas (US) may suggest that they are potentially applicable in other countries. The objective of this white paper is to provide an overview of the past practice in 2 + 1 highways and discuss the research directions and challenges in this field, specially focusing on, but not limited to, operational research in association with the activities of the Subcommittee on Two-Lane Highways (AHB40 2.2) of the Transportation Research Board. The significance of this paper is twofold: (1) it provides wider coverage of past 2 + 1 highways design and evaluation, and (2) it discusses future directions of this field.


2018 ◽  
Vol 35 (13) ◽  
pp. 2338-2339 ◽  
Author(s):  
Hongyang Li ◽  
Shuai Hu ◽  
Nouri Neamati ◽  
Yuanfang Guan

Abstract Motivation Combination therapy is widely used in cancer treatment to overcome drug resistance. High-throughput drug screening is the standard approach to study the drug combination effects, yet it becomes impractical when the number of drugs under consideration is large. Therefore, accurate and fast computational tools for predicting drug synergistic effects are needed to guide experimental design for developing candidate drug pairs. Results Here, we present TAIJI, a high-performance software for fast and accurate prediction of drug synergism. It is based on the winning algorithm in the AstraZeneca-Sanger Drug Combination Prediction DREAM Challenge, which is a unique platform to unbiasedly evaluate the performance of current state-of-the-art methods, and includes 160 team-based submission methods. When tested across a broad spectrum of 85 different cancer cell lines and 1089 drug combinations, TAIJI achieved a high prediction correlation (0.53), approaching the accuracy level of experimental replicates (0.56). The runtime is at the scale of minutes to achieve this state-of-the-field performance. Availability and implementation TAIJI is freely available on GitHub (https://github.com/GuanLab/TAIJI). It is functional with built-in Perl and Python. Supplementary information Supplementary data are available at Bioinformatics online.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3139 ◽  
Author(s):  
Carlos Fernández Bandera ◽  
Ana Muñoz Mardones ◽  
Hu Du ◽  
Juan Echevarría Trueba ◽  
Germán Ramos Ruiz

This study presents a novel optimization methodology for choosing optimal building retrofitting strategies based on the concept of exergy analysis. The study demonstrates that the building exergy analysis may open new opportunities in the design of an optimal retrofit solution despite being a theoretical approach based on the high performance of a Carnot reverse cycle. This exergy-based solution is different from the one selected through traditional efficient retrofits where minimizing energy consumption is the primary selection criteria. The new solution connects the building with the reference environment, which acts as “an unlimited sink or unlimited sources of energy”, and it adapts the building to maximize the intake of energy resources from the reference environment. The building hosting the School of Architecture at the University of Navarra has been chosen as the case study building. The unique architectural appearance and bespoke architectural characteristics of the building limit the choices of retrofitting solutions; therefore, retrofitting solutions on the façade, roof, roof skylight and windows are considered in multi-objective optimization using the jEPlus package. It is remarkable that different retrofitting solutions have been obtained for energy-driven and exergy-driven optimization, respectively. Considering the local contexts and all possible reference environments for the building, three “unlimited sinks or unlimited sources of energy” are selected for the case study building to explore exergy-driven optimization: the external air, the ground in the surrounding area and the nearby river. The evidence shows that no matter which reference environment is chosen, an identical envelope retrofitting solution has been obtained.


Sign in / Sign up

Export Citation Format

Share Document