scholarly journals The first law of heterotic stringy black hole mechanics at zeroth order in α′

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Zachary Elgood ◽  
Dimitrios Mitsios ◽  
Tomás Ortín ◽  
David Pereñíguez

Abstract We prove the first law of black hole mechanics in the context of the Heterotic Superstring effective action compactified on a torus to leading order in α′, using Wald’s formalism, covariant Lie derivatives and momentum maps. The Kalb-Ramond field strength of this theory has Abelian Chern-Simons terms which induce Nicolai-Townsend transformations of the Kalb-Ramond field. We show how to deal with all these gauge symmetries deriving the first law in terms of manifestly gauge-invariant quantities. In presence of Chern-Simons terms, several definitions of the conserved charges exist, but the formalism picks up only one of them to play a role in the first law. We study explicitly a non-extremal, charged, black ring solution of pure $$ \mathcal{N} $$ N = 1, d = 5 supergravity embedded in the Heterotic Superstring effective field theory.This work is a first step towards the derivation of the first law at first order in α′ where, more complicated, non-Abelian, Lorentz (“gravitational”) and Yang-Mills Chern-Simons terms are included in the Kalb-Ramond field strength. The derivation of a first law is a necessary step towards the derivation of a manifestly gauge-invariant entropy formula which is still lacking in the literature. In its turn, this entropy formula is needed to compare unambiguously macroscopic and microscopic black hole entropies.

2019 ◽  
Vol 8 (1) ◽  
pp. 11-15
Author(s):  
Suhaivi Hamdan ◽  
Erwin Erwin ◽  
Saktioto Saktioto

Kuat medan tensor yang ditransformasikan secara homogen terhadap perluasan transformasi gauge memenuhi bentuk sifat invarian gauge. Analisa invarian gauge dalam bantuk integeralnya memperlihatkan hubungan dengan koordinat ruang-waktu yang menunjukan bentuk baru dari topologi Lagrangian. Sifat invarian dari bentuk Pontryagin-Chern terhadap kuat medan tensor non-Abelian dan lemma Poincare dapat digunakan untuk mengkontruksi bentuk ChSAS yang menunjukan sifat quasi-invarian dibawah transformasi gauge. Artikel ini bertujuan untuk membuktikan bahwa kuat medan tensor Yang-Mills dari bentuk ChSAS memilik variasi gauge anomali non-Abelian seperti pada bentuk Chern-Simons. Integrasi bentuk ChSAS menghasilkan dimensi-4, 6 dan 8 variasi gauge genap dan memperlihatkan hubungan dengan bentuk Chern-Simons dimensi-3 dan 5 untuk variasi gauge ganjil. Bentuk ChSAS memperlihatkan variabel lebih kompleks yang menujukan sifat berosilasi. Tensors field strength transformation homogeneously to extend gauge transformation fulfilling charateristic gauge invariant form. Analysis gauge invariant in integral form shows corresponding with space-time coordinate that prove new topology Lagrangians form. Furthermore invariant charateristic of Pontryagin-Chern to non-Abelian tensor gauge fields and lemma Poincare used to contruct ChSAS forms which shows quasi-inavriant under gauge transformation. This paper aims to prove Yang-Mills tensor gauge field of ChSAS forms has variation non-Abelian anomaly like Chern-Simons forms. The integration ChSAS forms resulted 4, 6 and 8-dimensional even gauge variation which also correspond 3 and 5-dimensional odd gauge variation Chern-Simons forms. The ChSAS forms also showed complex variable and osilation.  Keywords: Pontryagin-Chern, Kuat medan tensor non-Abelian, Chern-Simans-Antoniadis-Savvidy, Anomali Non-Abelian.


2014 ◽  
Vol 29 (31) ◽  
pp. 1450183 ◽  
Author(s):  
A. Shukla ◽  
S. Krishna ◽  
R. P. Malik

We derive the off-shell nilpotent and absolutely anticommuting Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetry transformations, corresponding to the (1-form) Yang–Mills (YM) and (2-form) tensorial gauge symmetries of the four (3+1)-dimensional (4D) Freedman–Townsend (FT) model, by exploiting the augmented version of Bonora–Tonin's (BT) superfield approach to BRST formalism where the 4D flat Minkowskian theory is generalized onto the (4, 2)-dimensional supermanifold. One of the novel observations is the fact that we are theoretically compelled to go beyond the horizontality condition (HC) to invoke an additional set of gauge-invariant restrictions (GIRs) for the derivation of the full set of proper (anti-)BRST symmetries. To obtain the (anti-)BRST symmetry transformations, corresponding to the tensorial (2-form) gauge symmetries within the framework of augmented version of BT-superfield approach, we are logically forced to modify the FT-model to incorporate an auxiliary 1-form field and the kinetic term for the antisymmetric (2-form) gauge field. This is also a new observation in our present investigation. We point out some of the key differences between the modified FT-model and Lahiri-model (LM) of the dynamical non-Abelian 2-form gauge theories. We also briefly mention a few similarities.


2003 ◽  
Vol 18 (33n35) ◽  
pp. 2415-2422 ◽  
Author(s):  
V. P. NAIR

I review the analysis of (2+1)-dimensional Yang-Mills (YM2+1) theory via the use of gauge-invariant matrix variables. The vacuum wavefunction, string tension, the propagator mass for gluons, its relation to the magnetic mass for YM3+1at nonzero temperature and the extension of our analysis to the Yang-Mills-Chern-Simons theory are discussed. A possible extension to 3 + 1 dimensions is also briefly considered.


2015 ◽  
Vol 12 (10) ◽  
pp. 1550104 ◽  
Author(s):  
Alcides Garat

A new local gauge invariant method is introduced in order to maximally simplify the expression for a SU(2) non-Abelian field strength. The new tetrads introduced in previous works are going to play a fundamental role in the algorithm presented in this paper. Three new local gauge invariant objects are going to guide us through the process of making a field strength block diagonal. The process is also covariant. Any nontrivial isospace field strength projection will become block diagonal through this gauge invariant algorithm. As an application we will find new local observables in Yang–Mills theories.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Emel Altas ◽  
Ercan Kilicarslan ◽  
Bayram Tekin

AbstractWe construct the gauge-invariant electric and magnetic charges in Yang–Mills theory coupled to cosmological general relativity (or any other geometric gravity), extending the flat spacetime construction of Abbott and Deser (Phys Lett B 116:259–263, 1982). For non-vanishing background gauge fields, the charges receive non-trivial contribution from the gravity part. In addition, we study the constraints on the first order perturbation theory and establish the conditions for linearization instability: that is the validity of the first order perturbation theory.


2012 ◽  
Vol 27 (20) ◽  
pp. 1250108
Author(s):  
MARTIN KOBER

An intersection of Yang–Mills theory with the gauge description of general relativity is considered. This intersection has its origin in a generalized algebra, where the generators of the SO(3, 1) group as gauge group of general relativity and the generators of a SU(N) group as gauge group of Yang–Mills theory are not separated anymore but are related by fulfilling nontrivial commutation relations with each other. Because of the Coleman–Mandula theorem this algebra cannot be postulated as Lie algebra. As consequence, extended gauge transformations as well as an extended expression for the field strength tensor is obtained, which contains a term consisting of products of the Yang–Mills connection and the connection of general relativity. Accordingly a new gauge invariant action incorporating the additional term of the generalized field strength tensor is built, which depends of course on the corresponding tensor determining the additional intersection commutation relations. This means that the theory describes a decisively modified interaction structure between the Yang–Mills gauge field and the gravitational field leading to a violation of the equivalence principle.


1988 ◽  
Vol 03 (05) ◽  
pp. 1155-1182 ◽  
Author(s):  
HIDENAGA YAMAGISHI

The gauge-invariant correlation function for the Yang-Mills field strengths is shown to admit a symmetric decomposition into electric and magnetic components. The spectral weights are seen to obey a sum rule of the superconvergence type, owing to asymptotic freedom. The close relation between the dielectric function, electric-magnetic duality, and the algebra of generalized Chern-Simons charges is illustrated for the linearized Yang-Mills-Higgs system.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Andrey Feldman

Abstract In this paper, we propose a generalization of the AdS2/CFT1 correspondence constructed by Mezei, Pufu and Wang in [1], which is the duality between 2d Yang-Mills theory with higher derivatives in the AdS2 background, and 1d topological quantum mechanics of two adjoint and two fundamental U(N ) fields, governing certain protected sector of operators in 3d ABJM theory at the Chern-Simons level k = 1. We construct a holographic dual to a flavored generalization of the 1d quantum mechanics considered in [1], which arises as the effective field theory living on the intersection of stacks of N D2-branes and k D6-branes in the Ω-background in Type IIA string theory, and describes the dynamics of the protected sector of operators in $$ \mathcal{N} $$ N = 4 theory with k fundamental hypermultiplets, having a holographic description as M-theory in the AdS4× S7/ℤk background. We compute the structure constants of the bulk theory gauge group, and construct a map between the observables of the boundary theory and the fields of the bulk theory.


2011 ◽  
Vol 01 ◽  
pp. 285-290
Author(s):  
CHANG-YOUNG EE

We consider noncommutative BTZ black hole solutions in two different coordinate systems, the polar and rectangular coordinates. The analysis is carried out by obtaining noncommutative solutions of U(1, 1) × U(1, 1) Chern-Simons theory on AdS3 in the two coordinate systems via the Seiberg-Witten map. This is based on the noncommutative extension of the equivalence between the classical BTZ solution and the solution of ordinary SU(1, 1) × SU(1, 1) Chern-Simons theory on AdS3. The obtained solutions in these noncommutative coordinate systems become different in the first order of the noncommutativity parameter θ.


Sign in / Sign up

Export Citation Format

Share Document