scholarly journals Probing baryogenesis with neutron-antineutron oscillations

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Kåre Fridell ◽  
Julia Harz ◽  
Chandan Hati

Abstract In the near future, the Deep Underground Neutrino Experiment and the European Spallation Source aim to reach unprecedented sensitivity in the search for neutron-antineutron (n-$$ \overline{n} $$ n ¯ ) oscillations, whose observation would directly imply |∆B| = 2 violation and hence might hint towards a close link to the mechanism behind the observed baryon asymmetry of the Universe. In this work, we explore the consequences of such a discovery for baryogenesis first within a model-independent effective field theory approach. We then refine our analysis by including a source of CP violation and different hierarchies between the scales of new physics using a simplified model. We analyse the implication for baryogenesis in different scenarios and confront our results with complementary experimental constraints from dinucleon decay, LHC, and meson oscillations. We find that for a small mass hierarchy between the new degrees of freedom, an observable rate for n-$$ \overline{n} $$ n ¯ oscillation would imply that the washout processes are too strong to generate any sizeable baryon asymmetry, even if the CP violation is maximal. On the other hand, for a large hierarchy between the new degrees of freedom, our analysis shows that successful baryogenesis can occur over a large part of the parameter space, opening the window to be probed by current and future colliders and upcoming n-$$ \overline{n} $$ n ¯ oscillation searches.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Lucien Heurtier ◽  
Hao-Lin Li ◽  
Huayang Song ◽  
Shufang Su ◽  
Wei Su ◽  
...  

AbstractThe Higgs sector in neutral naturalness models provides a portal to the hidden sectors, and thus measurements of Higgs couplings at current and future colliders play a central role in constraining the parameter space of the model. We investigate a class of neutral naturalness models, in which the Higgs boson is a pseudo-Goldstone boson from the universal SO(N)/SO(N −1) coset structure. Integrating out the radial mode from the spontaneous global symmetry breaking, we obtain various dimension-six operators in the Standard Model effective field theory, and calculate the low energy Higgs effective potential with radiative corrections included. We perform aχ2fit to the Higgs coupling precision measurements at current and future colliders and show that the new physics scale could be explored up to 2.3 (2.4) TeV without (with) the Higgs invisible decay channels at future Higgs factories. The limits are comparable to the indirect constraints obtained via electroweak precision measurements.


2020 ◽  
Vol 35 (01) ◽  
pp. 1930018
Author(s):  
Diego Guadagnoli

This paper describes the work pursued in the years 2008–2013 on improving the Standard Model prediction of selected flavor-physics observables. The latter includes: (1) [Formula: see text], that quantifies indirect CP violation in the [Formula: see text] system and (2) the very rare decay [Formula: see text], recently measured at the LHC. Concerning point (1), the paper describes our reappraisal of the long-distance contributions to [Formula: see text],[Formula: see text] that have permitted to unveil a potential tension between CP violation in the [Formula: see text]- and [Formula: see text]-system. Concerning point (2), the paper gives a detailed account of various systematic effects pointed out in Ref. 4 and affecting the Standard Model [Formula: see text] decay rate at the level of 10% — hence large enough to be potentially misinterpreted as nonstandard physics, if not properly included. The paper further describes the multifaceted importance of the [Formula: see text] decays as new physics probes, for instance how they compare with [Formula: see text]-peak observables at LEP, following the effective-theory approach of Ref. 5. Both cases (1) and (2) offer clear examples in which the pursuit of precision in Standard Model predictions offered potential avenues to discovery. Finally, this paper describes the impact of the above results on the literature, and what is the further progress to be expected on these and related observables.


2000 ◽  
Vol 15 (08) ◽  
pp. 1079-1156
Author(s):  
I. I. BIGI

The narrative of these lectures contains three main threads: (i) CP violation despite having so far been observed only in the decays of neutral kaons has been recognized as a phenomenon of truly fundamental importance. The KM ansatz constitutes the minimal implementation of CP violation: without requiring unknown degrees of freedom it can reproduce the known CP phenomenology in a nontrivial way. (ii) The physics of beauty hadrons — in particular their weak decays — opens a novel window onto fundamental dynamics: they usher in a new quark family (presumably the last one); they allow us to determine fundamental quantities of the Standard Model like the b quark mass and the CKM parameters V(cb), V(ub), V(ts) and V(td); they exhibit speedy or even rapid [Formula: see text] oscillations. (iii) Heavy Quark Expansions allow us to treat B decays with an accuracy that would not have been thought possible a mere decade ago. These three threads are joined together in the following manner: (a) Huge CP asymmetries are predicted in B decays, which represents a decisive test of the KM paradigm for CP violation. (b) Some of these predictions are made with high parametric reliability, which (c) can be translated into numerical precision through the judicious employment of novel theoretical technologies. (d) Beauty decays thus provide us with a rich and promising field to search for New Physics and even study some of its salient features. At the end of it there might quite possibly be a New Paradigm for High Energy Physics. There will be some other threads woven into this tapestry: electric dipole moments, and CP violation in other strange and in charm decays.


2014 ◽  
Vol 29 (16) ◽  
pp. 1430016 ◽  
Author(s):  
Xin Qian ◽  
Wei Wang

We review the current-generation short-baseline reactor neutrino experiments that have firmly established the third neutrino mixing angle θ13 to be nonzero. The relative large value of θ13 (around 9°) has opened many new and exciting opportunities for future neutrino experiments. Daya Bay experiment with the first measurement of [Formula: see text] is aiming for a precision measurement of this atmospheric mass-squared splitting with a comparable precision as [Formula: see text] from accelerator muon neutrino experiments. JUNO, a next-generation reactor neutrino experiment, is targeting to determine the neutrino mass hierarchy (MH) with medium baselines (~ 50 km). Beside these opportunities enabled by the large θ13, the current-generation (Daya Bay, Double Chooz, and RENO) and the next-generation (JUNO, RENO-50, and PROSPECT) reactor experiments, with their unprecedented statistics, are also leading the precision era of the three-flavor neutrino oscillation physics as well as constraining new physics beyond the neutrino Standard Model.


2014 ◽  
Vol 2014 (5) ◽  
Author(s):  
S.K. Agarwalla ◽  
◽  
L. Agostino ◽  
M. Aittola ◽  
A. Alekou ◽  
...  

Author(s):  
Chitta Ranjan Das ◽  
Katri Huitu ◽  
Zhanibek Kurmanaliyev ◽  
Bakytbek Mauyey ◽  
Timo Kärkkäinen

The crucial phenomenological and experimental predictions for new physics are outlined, where the number of problems of the Standard Model (neutrino masses and oscillations, dark matter, baryon asymmetry of the Universe, leptonic CP-violation) could find their solutions. The analogies between the cosmological neutrino mass scale from the early universe data and laboratory probes are discussed and the search for new physics and phenomena.


2008 ◽  
Vol 17 (13n14) ◽  
pp. 2617-2624 ◽  
Author(s):  
BARAK KOL

Identifying the fundamental degrees of freedom of a black hole poses a long-standing puzzle. Recently Goldberger and Rothstein forwarded a theory of the low frequency degrees of freedom within the effective field theory approach, where they are relevancy-ordered but of unclear physical origin. Here these degrees of freedom are identified with near-horizon but non-compact gravitational perturbations which are decomposed into delocalized multipoles. Their world-line (kinetic) action is determined within the classical effective field theory (CLEFT) approach and their interactions are discussed. The case of the long-wavelength scattering of a scalar wave off a Schwarzschild black hole is treated in some detail, interpreting within the CLEFT approach the equality of the leading absorption cross section with the horizon area.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 240
Author(s):  
Alessio Giarnetti ◽  
Davide Meloni

We check the capability of the DUNE neutrino experiment to detect new sources of leptonic CP violation beside the single phase expected in the Standard Model. We illustrate our strategy based on the measurement of CP asymmetries in the case that new physics will show up as nonstandard neutrino interactions and sterile neutrino states and show that the most promising one, once the experimental errors are taken into account in both scenarios, is the one related to the νμ→νe transition.


2015 ◽  
Vol 30 (07) ◽  
pp. 1550017 ◽  
Author(s):  
Debajyoti Dutta ◽  
Kalpana Bora

In this work, we have explored the possibilities of improving CP violation (CPV) discovery potential of newly planned Long-Baseline Neutrino Experiment (LBNE), USA, by combining with data from reactors. The third mixing angle θ13 is now very precisely measured and this precise measurement of θ13 helps in the measurement of CPV. Here, CPV is studied with and without data from reactors. The impact of placing a neutrino data (ND) is also studied. It is found that CPV discovery potential of LBNE with ND increases when combined with data from reactors. With a far detector of 35 kt, it is possible to obtain 5σ sensitivity of CPV when run for 5 years in ν and 5 years in [Formula: see text] mode. When normal hierarchy is assumed, CPV sensitivity is maximum. CPV discovery is possible by combining 5 years neutrino data from LBNE with 3 years anti-neutrino data from reactors. This study reveals that CPV can also be discovered at 5σ cl in inverted mass hierarchy (IH) mode when appearance measurement of LBNE is combined with reactors.


Sign in / Sign up

Export Citation Format

Share Document