scholarly journals Friction behavior of the wire material Gummetal®

Author(s):  
Isabel Eri Kopsahilis ◽  
Dieter Drescher

Abstract Objectives Gummetal® (Maruemu Works, Osaka, Japan), a new orthodontic wire material successfully used in clinical applications since 2006, is biocompatible and exhibits exceptionally high elasticity, nonlinear elastic behavior, plasticity and strength. Systematic comparisons of friction behavior are lacking; thus, the friction of Gummetal® in the binding modus was compared to commonly used low friction wires. Materials and methods In vivo tests were run with Gummetal®, CoCr (cobalt-chromium Elgiloy®, Rocky Mountain Orthodontics, Denver, CO, USA), β‑Ti (β-Titanium TMA®, Ormco, Orange, CA, USA), NiTi (nickel–titanium, NiTi-SE, Dentalline, Birkenfeld, Germany), and stainless steel (SS; Ref. 251-925, 3M Unitek, Monrovia, CA, USA) [dimensions: 0.014 inch (0.35 mm), 0.016 inch (0.40 mm), 0.016 × 0.022 inch (0.40 × 0.56 mm), and 0.019 × 0.025 inch (0.48 × 0.64 mm)—β-Ti not available in the dimension 0.014 inch]. These were combined with Discovery® (Dentaurum, Ispringen, Germany), Micro Sprint® (Forestadent, Pforzheim, Germany), Clarity™ (3M Unitek), and Inspire Ice™ (Ormco) and slots in the dimension 0.022 inch (0.56 mm) and, except for the 0.019 × 0.025 inch wires, in the dimension 0.018 inch (0.46 mm). They were ligated with a 0.010 inch (0.25 mm) steel ligature (Smile Dental, Ratingen, Germany). Brackets were angulated by applying a moment of force of 10 Nmm against the wire, which was pulled through the slot at 0.2 mm/s. Results In 660 tests using 132 bracket–wire combinations, friction loss for Gummetal® was comparable to and, in a few combinations with Micro Sprint®, significantly lower (p < 0.05) than SS and CoCr. The friction for Gummetal® was significantly lower (p < 0.05) than NiTi, and β‑Ti. In some bracket–wire combinations, lower friction was found with round wires compared to rectangular wires, except for the combination with Inspire Ice™, which was higher but not significant. Slot size did not have a significant effect on friction in most combinations. Conclusion The low friction associated with Gummetal® wires during arch-guided tooth movement will be a valuable addition to the armamentarium of orthodontists.

Author(s):  
Julien van Kuilenburg ◽  
Marc A. Masen ◽  
Emile van der Heide

In this work, analytical models available from contact mechanics theory having a proven record in mechanical engineering were used to develop a model predicting the friction behavior of human skin. A multi-scale contact model was developed in which the contact parameters are calculated at three levels, each level characterized by its elastic behavior and geometry. For a product part in contact with the so-called hairy skin the skin topography can be described as being composed of spherical contacts, whereas for the finger in contact with a product surface the fingerprint ridges are modeled as annulus shaped line contacts. Sliding friction was measured in vivo between the skin and different surface textures produced using ultra-short pulsed laser technology. The results observed during in vivo experiments are very well explained by the developed model, which predicts the friction as a function of product geometry, asperity geometry and normal load.


2021 ◽  
Vol 69 (4) ◽  
Author(s):  
Michael Chandross ◽  
Nicolas Argibay

AbstractThe friction behavior of metals is directly linked to the mechanisms that accommodate deformation. We examine the links between mechanisms of strengthening, deformation, and the wide range of friction behaviors that are exhibited by shearing metal interfaces. Specifically, the focus is on understanding the shear strength of nanocrystalline and nanostructured metals, and conditions that lead to low friction coefficients. Grain boundary sliding and the breakdown of Hall–Petch strengthening at the shearing interface are found to generally and predictably explain the low friction of these materials. While the following is meant to serve as a general discussion of the strength of metals in the context of tribological applications, one important conclusion is that tribological research methods also provide opportunities for probing the fundamental properties and deformation mechanisms of metals.


Author(s):  
Birgit Rath-Deschner ◽  
Andressa V. B. Nogueira ◽  
Svenja Beisel-Memmert ◽  
Marjan Nokhbehsaim ◽  
Sigrun Eick ◽  
...  

Abstract Objectives The aim of this in vitro and in vivo study was to investigate the interaction of periodontitis and orthodontic tooth movement on interleukin (IL)-6 and C-X-C motif chemokine 2 (CXCL2). Materials and methods The effect of periodontitis and/or orthodontic tooth movement (OTM) on alveolar bone and gingival IL-6 and CXCL2 expressions was studied in rats by histology and RT-PCR, respectively. The animals were assigned to four groups (control, periodontitis, OTM, and combination of periodontitis and OTM). The IL-6 and CXCL2 levels were also studied in human gingival biopsies from periodontally healthy and periodontitis subjects by RT-PCR and immunohistochemistry. Additionally, the synthesis of IL-6 and CXCL2 in response to the periodontopathogen Fusobacterium nucleatum and/or mechanical strain was studied in periodontal fibroblasts by RT-PCR and ELISA. Results Periodontitis caused an increase in gingival levels of IL-6 and CXCL2 in the animal model. Moreover, orthodontic tooth movement further enhanced the bacteria-induced periodontal destruction and gingival IL-6 gene expression. Elevated IL-6 and CXCL2 gingival levels were also found in human periodontitis. Furthermore, mechanical strain increased the stimulatory effect of F. nucleatum on IL-6 protein in vitro. Conclusions Our study suggests that orthodontic tooth movement can enhance bacteria-induced periodontal inflammation and thus destruction and that IL-6 may play a pivotal role in this process. Clinical relevance Orthodontic tooth movement should only be performed after periodontal therapy. In case of periodontitis relapse, orthodontic therapy should be suspended until the periodontal inflammation has been successfully treated and thus the periodontal disease is controlled again.


2009 ◽  
Vol 79 (4) ◽  
pp. 703-714 ◽  
Author(s):  
Carmen Gonzales ◽  
Hitoshi Hotokezaka ◽  
Yoshinori Arai ◽  
Tadashi Ninomiya ◽  
Junya Tominaga ◽  
...  

Abstract Objective: To investigate the precise longitudinal change in the periodontal ligament (PDL) space width and three-dimensional tooth movement with continuous-force magnitudes in living rats. Materials and Methods: Using nickel-titanium closed-coil springs for 28 days, 10-, 25-, 50-, and 100-g mesial force was applied to the maxillary left first molars. Micro-CT was taken in the same rat at 0, 1, 2, 3, 10, 14, and 28 days. The width of the PDL was measured in the pressure and tension sides from 0 to 3 days. Angular and linear measurements were used to evaluate molar position at day 0, 10, 14, and 28. The finite element model (FEM) was constructed to evaluate the initial stress distribution, molar displacement, and center of rotation of the molar. Results: The initial evaluation of PDL width showed no statistical differences among different force magnitudes. Tooth movement was registered 1 hour after force application and gradually increased with time. From day 10, greater tooth movement was observed when 10 g of force was applied. The FEM showed that the center of rotation in the molar is located in the center of five roots at the apical third of the molar roots. Conclusion: The rat's molar movement mainly consists of mesial tipping, extrusion of distal roots, intrusion of mesial root, palatal inclination, and mesial rotation. Although the initial tooth movement after the application of different force magnitudes until day 3 was not remarkably different, 10 g of force produced more tooth movement compared with heavier forces at day 28.


2013 ◽  
Vol 690-693 ◽  
pp. 186-192
Author(s):  
Ho Hua Chung ◽  
Tsong Hsin Chen

This study concerned the influence of the material strength, ductility and impact energy and the relationship of the broken section profile vs. ductile transition brittle where the steel material was treated under different tempering temperature and hardness. Generally after the steel materials, 10B35 coil wire materials which was generally applied to form screws, was treated by quenching and tempering, its hardness ranged from HRC30 to HRC45. The results showed that the elongation rate beyond 20.4% would be proportional to the impact energy with linear relation, but with reverse proportion to the hardness value. The brittle-tough point of the hardness was set around HRC37 after heat treatment in order to balance the strength and the toughness. In addition, the coil wire materials were analyzed from broken section materials showing good toughness; this represented that the area of the cross section radiation layer due to ductile fracture would largely increase. On the contrary, the wire material test fragment with bad toughness represented that the area of the shear layer due to brittle fracture would largely increase as well. As to that material, if its hardness was greater than or equal to HRC37, that material would have an excellent turning danger from transition. At the same time, when the tempering temperature of the wire steel material was set under 4600C and its corresponding central hardness was about HRC37, the distance between two cementite phase layers suddenly increased. This result leaded to the reason why the wire material test fragment was turned into brittleness from ductility. Therefore, when the fastener was manufactured under tempering treatment, avoiding the tempering brittleness temperature range was necessary.


1996 ◽  
Vol 23 (3) ◽  
pp. 241-248 ◽  
Author(s):  
Dan Lundgren ◽  
Py Owman-Moll ◽  
Jüri Kurol ◽  
Birgit Mårtensson

This study was designed to test the accuracy of measurement methods for assessment of force and tooth movement in orthodontic procedures. Daily in vivo measurements of the force produced by activated archwires showed that the initial force declined substantially (by 20 per cent of mean value) within 3 days. Both the ‘trueness’ (validity) and precision of the force measurements, obtained with a strain gauge, were found to be high (SD values were 1·0 cN and 0·4 cN, respectively). Horizontal tooth movements were measured with three different instruments: a slide calliper, a co-ordinate measuring machine, and laser measuring equipment based on holograms. There was a good level of agreement between these methods. This was also confirmed by calibration data. The precision of the methods was (SD values) 0·06, 0·07, and 0·13 mm, respectively. The benefits of the use of the co-ordinate measuring machine are obvious, since it can measure tooth movements in relation to reference planes in all directions.


The current research compared and analysed the tensile strength of silver soldered stainless steel and cobalt-chromium orthodontic wire joints with band material The effect of joint site planning on various orthodontic joining configurations was investigated. A total of sixty wire specimens were chosen, thirty in the stainless-steel group and thirty in the cobalt – chromium group. Again, each group's sample was divided into three subgroups, namely End – End, Round, and Orthodontic band material. The study findings suggested all three configurations can be used to make silver soldered joints regardless of the wire consistency. When subjecting the wire to joint site planning, however, stainless steel wire should be used with its limitations in mind.


The current research compared and analysed the tensile strength of silver soldered stainless steel and cobalt-chromium orthodontic wire joints with band material The effect of joint site planning on various orthodontic joining configurations was investigated. A total of sixty wire specimens were chosen, thirty in the stainless-steel group and thirty in the cobalt – chromium group. Again, each group's sample was divided into three subgroups, namely End – End, Round, and Orthodontic band material. The study findings suggested all three configurations can be used to make silver soldered joints regardless of the wire consistency. When subjecting the wire to joint site planning, however, stainless steel wire should be used with its limitations in mind.


2020 ◽  
Author(s):  
Zhiguo Yuan ◽  
Wei Zhang ◽  
Xiangchao Meng ◽  
Jue Zhang ◽  
Teng TengLong ◽  
...  

Abstract Objective: This study aimed to quantitatively investigate the peri-implant histology of applying defect-size polyether ether ketone (PEEK) implant for the treatment of localized osteochondral defects in the femoral head and compared it with cobalt chromium molybdenum (CoCrMo) alloy implant.Methods: A femoral head osteochondral defect model was created in the left hips of goats (n=12). Defects were randomly treated by immediate placement of a PEEK (n=6) or CoCrMo implant (n=6). The un-operated right hip joints served as a control. Goats were sacrificed at 12 weeks. Periprosthetic cartilage quality was semi-quantitatively analyzed macroscopically and microscopically. Implant osseointegration was measured by micro-CT and histomorphometry.Results: The modified macroscopic articular evaluation score in the PEEK group was lower than that in the CoCrMo group (p<0.05), and the histological score of the periprosthetic and acetabular cartilage in the PEEK group was lower than that in the CoCrMo group (P<0.05). The mean bone-implant contact for PEEK implants was comparable with that for CoCrMo alloy implants at 12 weeks.Conclusions: A PEEK implant for the treatment of local osteochondral defect in the femoral head demonstrated effective fixation and superior in vivo cartilage protection compared with an identical CoCrMo alloy implant.


Sign in / Sign up

Export Citation Format

Share Document