scholarly journals Interleukin-1β Activates a MYC-Dependent Metabolic Switch in Kidney Stromal Cells Necessary for Progressive Tubulointerstitial Fibrosis

2018 ◽  
Vol 29 (6) ◽  
pp. 1690-1705 ◽  
Author(s):  
Dario R. Lemos ◽  
Michael McMurdo ◽  
Gamze Karaca ◽  
Julia Wilflingseder ◽  
Irina A. Leaf ◽  
...  

Background Kidney injury is characterized by persisting inflammation and fibrosis, yet mechanisms by which inflammatory signals drive fibrogenesis remain poorly defined.Methods RNA sequencing of fibrotic kidneys from patients with CKD identified a metabolic gene signature comprising loss of mitochondrial and oxidative phosphorylation gene expression with a concomitant increase in regulators and enzymes of glycolysis under the control of PGC1α and MYC transcription factors, respectively. We modeled this metabolic switch in vivo, in experimental murine models of kidney injury, and in vitro in human kidney stromal cells (SCs) and human kidney organoids.Results In mice, MYC and the target genes thereof became activated in resident SCs early after kidney injury, suggesting that acute innate immune signals regulate this transcriptional switch. In vitro, stimulation of purified human kidney SCs and human kidney organoids with IL-1β recapitulated the molecular events observed in vivo, inducing functional metabolic derangement characterized by increased MYC-dependent glycolysis, the latter proving necessary to drive proliferation and matrix production. MYC interacted directly with sequestosome 1/p62, which is involved in proteasomal degradation, and modulation of p62 expression caused inverse effects on MYC expression. IL-1β stimulated autophagy flux, causing degradation of p62 and accumulation of MYC. Inhibition of the IL-1R signal transducer kinase IRAK4 in vivo or inhibition of MYC in vivo as well as in human kidney organoids in vitro abrogated fibrosis and reduced tubular injury.Conclusions Our findings define a connection between IL-1β and metabolic switch in fibrosis initiation and progression and highlight IL-1β and MYC as potential therapeutic targets in tubulointerstitial diseases.

2021 ◽  
Vol 8 ◽  
Author(s):  
Weitao Zhang ◽  
Ruochen Qi ◽  
Tingting Li ◽  
Xuepeng Zhang ◽  
Yi Shi ◽  
...  

Sepsis-associated acute kidney injury (SA-AKI) is a life-threatening syndrome. Lipopolysaccharide (LPS) is a widely used inducer for modeling SA-AKI both in vivo and in vitro. However, due to the innate complexity of the kidney architecture, the mechanisms underlying the pathogenesis of SA-AKI, as well as those involved in LPS-induced kidney injury remain to be clarified. Kidney organoids derived from human pluripotent stem cells (hPSCs) act as a model of multiple types of kidney cells in vitro and eliminate potential confounders in vivo. In the current study, we established LPS-induced kidney injury models both in vivo and in human kidney organoids. Kidney function, pathological changes, and markers of oxidative stress were evaluated with/without the presence of methylprednisolone (MP) treatment both in vivo and in vitro. The extent of LPS-induced oxidative stress and apoptosis in kidney organoids was further investigated in vitro. LPS-induced acute kidney injury in mice, together with pathological changes and increased oxidative stress, as well as enhanced apoptosis in kidney cells were evaluated. These phenomena were ameliorated by MP treatment. Experiments in kidney organoids showed that the LPS-induced apoptotic effects occurred mainly in podocytes and proximal tubular cells. Our experiments demonstrated the efficacy of using kidney organoids as a solid platform to study LPS-induced kidney injury. LPS induced oxidative stress as well as apoptosis in kidney cells independently of changes in perfusion or immune cell infiltration. MP treatment partially alleviated LPS-induced injury by reducing kidney cell oxidative stress and apoptosis.


Author(s):  
Navin Gupta✉ ◽  
Emre Dilmen ◽  
Ryuji Morizane

Abstract The kidneys are essential organs that filter the blood, removing urinary waste while maintaining fluid and electrolyte homeostasis. Current conventional research models such as static cell cultures and animal models are insufficient to grasp the complex human in vivo situation or lack translational value. To accelerate kidney research, novel research tools are required. Recent developments have allowed the directed differentiation of induced pluripotent stem cells to generate kidney organoids. Kidney organoids resemble the human kidney in vitro and can be applied in regenerative medicine and as developmental, toxicity, and disease models. Although current studies have shown great promise, challenges remain including the immaturity, limited reproducibility, and lack of perfusable vascular and collecting duct systems. This review gives an overview of our current understanding of nephrogenesis that enabled the generation of kidney organoids. Next, the potential applications of kidney organoids are discussed followed by future perspectives. This review proposes that advancement in kidney organoid research will be facilitated through our increasing knowledge on nephrogenesis and combining promising techniques such as organ-on-a-chip models.


2021 ◽  
Author(s):  
Xin Yu ◽  
Shan Jiang ◽  
Kailin Li ◽  
Xianzhen Yang ◽  
Zhihe Xu ◽  
...  

Abstract Background Human pluripotent stem cell (hPSCs)-derived kidney organoids may contribute to disease modeling and generation of kidney replacement tissues. However, realization of such applications requires the induction of hPSCs into functional mature organoids. One of the key questions for this process is whether a specific vascular system exists for nephrogenesis. Our previous study showed that implantation of hPSC-derived organoids below the kidney capsules of unilaterally nephrectomized immunodeficient mice for a short-term (2 weeks) resulted in the enlargement of organoids and production of vascular cells, although signs of maturation were lacking. Methods In this study, organoids are induced in vitro during 15 days and then sub-capsularly grafted into kidneys, we used the same unilaterally nephrectomized immunodeficient mice model to examine whether a medium -term (4 weeks) implantation could improve organoid maturation and vascularization, as evaluated by immunofluorescence and transmission electron microscopy(TEM). Results We demonstrate that after 2–4 weeks implantation, implanted renal organoids can form host-derived vascularization and mature in the absence of any exogenous vascular endothelial growth factor. Glomerular filtration barrier maturation was evidenced by glomerular basement membrane deposition, perforated glomerular endothelial cell development, as well as apical to basal podocyte polarization. A polarized monolayer epithelium and extensive brush border were also observed for tubular epithelial cells. Conclusions Our results indicate that the in vivo microenvironment is important for the maturation of human kidney organoids. Stromal expansion and a reduction of nephron structures were observed following longer-term (12 weeks) implantation,suggesting effects on off-target cells during the induction process. Accordingly, induction efficiency and transplantation models should be improved in the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
JunTao Wang ◽  
Peng Jiao ◽  
XiaoYing Wei ◽  
Yun Zhou

Acute kidney injury (AKI) is a critical clinical disease characterized by an acute decrease in renal function. Long non-coding RNAs (LncRNAs) are important in AKI. This study aimed to explore the mechanism of lncRNA Kcnq1ot1 in AKI by sponging microRNA (miR)-204-5p as a competitive endogenous RNA (ceRNA). AKI mouse model and hypoxia/reoxygenation (H/R) model of human kidney (HK) cells were established. Kcnq1ot1 expression, cell proliferation, and apoptosis were measured. Binding relations among Kcnq1ot1, miR-204-5p, and NLRP3 were verified. Pathological changes and cell apoptosis were detected. The results showed that Kcnq1ot1 was highly expressed in the AKI model in vivo and in vitro. Kcnq1ot1 knockdown promoted cell proliferation and prevented apoptosis and inflammation. Furthermore, Kcnq1ot1 inhibited miR-204-5p expression by competitively binding to miR-204-5p in HK-2 cells. miR-204-5p targeted NLRP3 and NLRP3 overexpression averted the inhibiting effect of miR-204-5p on apoptosis and inflammation in HK-2 cells in vitro. Kcnq1ot1 knockdown in vivo promoted miR-204-5p expression, inhibited NLRP3 inflammasome activation, reduced levels of SCr, BUN, and KIM-1, and thus alleviated AKI and reduced apoptosis. In summary, silencing lncRNA Kcnq1ot1 inhibited AKI by promoting miR-204-5p and inhibiting NLRP3 inflammasome activation.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Jack M. Milwid ◽  
Takaharu Ichimura ◽  
Matthew Li ◽  
Yunxin Jiao ◽  
Jungwoo Lee ◽  
...  

Acute kidney injury is a devastating syndrome that afflicts over 2,000,000 people in the US per year, with an associated mortality of greater than 70% in severe cases. Unfortunately, standard-of-care treatments are not sufficient for modifying the course of disease. Many groups have explored the use of bone marrow stromal cells (BMSCs) for the treatment of AKI because BMSCs have been shown to possess unique anti-inflammatory, cytoprotective, and regenerative propertiesin vitroandin vivo. It is yet unresolved whether the primary mechanisms controlling BMSC therapy in AKI depend on direct cell infusion, or whether BMSC-secreted factors alone are sufficient for mitigating the injury. Here we show that BMSC-secreted factors are capable of providing a survival benefit to rats subjected to cisplatin-induced AKI. We observed that when BMSC-conditioned medium (BMSC-CM) is administered intravenously, it prevents tubular apoptosis and necrosis and ameliorates AKI. In addition, we observed that BMSC-CM causes IL-10 upregulation in treated animals, which is important to animal survival and protection of the kidney. In all, these results demonstrate that BMSC-secreted factors are capable of providing support without cell transplantation, and the IL-10 increase seen in BMSC-CM-treated animals correlates with attenuation of severe AKI.


2021 ◽  
Vol 46 (2) ◽  
pp. 162-172
Author(s):  
Jing Li ◽  
Xing Fan ◽  
Qian Wang ◽  
Youlan Gong ◽  
Li Guo

<b><i>Background/Aims:</i></b> This study was designed to examine the role of long noncoding RNA PRNCR1 in cisplatin-induced acute kidney injury (AKI) in vitro and in vivo. <b><i>Methods:</i></b> The expression levels of PRNCR1 and miR-182-5p in cisplatin-induced AKI mice were examined. HK-2 cells were treated with cisplatin to induce cell damage. Then, the effects of PRNCR1 and miR-182-5p on cisplatin-stimulated HK-2 cell viability and apoptosis were detected by the CCK-8 and annexin V-FITC/PI method. Target genes of PRNCR1 and miR-182-5p were analyzed by bioinformatics analysis and luciferase. <b><i>Results:</i></b> The expression level of PRNCR1 was significantly reduced in cisplatin-induced AKI mice. In addition, overexpression of PRNCR1 attenuated the damage of cisplatin to HK-2. The expression level of miR-182-5p was significantly raised in cisplatin-induced AKI mice. MiR-182-5p was negatively regulated by PRNCR1 and leaded to an upregulation of EZH1 expression. Overexpression of PRNCR1 attenuated cisplatin-induced apoptosis by downregulating the miR-182-5p/EZH1 axis. <b><i>Conclusion:</i></b> LncPRNCR1 reduced the apoptosis of renal epithelial cells induced by cisplatin by modulating miR-182-5p/EZH1.


2019 ◽  
Author(s):  
Jenny L. M. Digby ◽  
Aneta Przepiorski ◽  
Alan J. Davidson ◽  
Veronika Sander

ABSTRACTAcute kidney injury (AKI) remains a major global healthcare problem and there is a need to develop human-based models to study AKI in vitro. Towards this goal, we have characterized induced pluripotent stem cell-derived human kidney organoids and their response to cisplatin, a chemotherapeutic drug that induces AKI and preferentially damages the proximal tubule. We found that a single treatment with 50 µM cisplatin induces HAVCR1 and CXCL8 expression, DNA damage (γH2AX) and cell death in the organoids in a dose-dependent manner but greatly impairs organoid viability. DNA damage was not specific to the proximal tubule but also affected the distal tubule and interstitial populations. This lack of specificity correlated with low expression of the proximal tubule-specific SLC22A2/OCT2 transporter for cisplatin. To improve viability, we developed a repeated low-dose regimen of 4x 5 µM cisplatin over 7 days and found this causing less toxicity while still inducing a robust AKI response that included secretion of known AKI biomarkers and inflammatory cytokines. This work validates the use of human kidney organoids to model aspects of AKI in vitro, with the potential to identify new AKI biomarkers and develop better therapies.


2021 ◽  
Author(s):  
Aneta Przepiorski ◽  
Thitinee Vanichapol ◽  
Eugenel B. Espiritu ◽  
Amanda E. Crunk ◽  
Emily Parasky ◽  
...  

Abstract BackgroundPersistent acute kidney injury (AKI) leads to tubular atrophy, kidney fibrosis, and, if severe enough, chronic kidney disease (CKD). A common feature of AKI is the generation of excessive reactive oxygen species (ROS) which damage cells and induce inflammation. MethodsHuman kidney organoids were treated with hemin, an iron-containing porphyrin derived from lysed red blood cells, that generates ROS in disease settings such as rhabdomyolysis, sepsis and ischemia reperfusion leading to AKI. In addition, we developed an induced pluripotent stem cell line expressing the biosensor, CytochromeC-GFP (CytoC-GFP), which provides a real-time readout of mitochondrial morphology, health, and early apoptotic events. ResultsWe found that hemin-treated kidney organoids show oxidative damage, increased expression of injury markers, impaired functionality of organic anion and cation transport and undergo fibrosis. Tubule injury could be detected in live CytoC-GFP organoids by cytoplasmic localization of fluorescence. Finally, we show that 4-(phenylthio)butanoic acid, an HDAC inhibitor with anti-fibrotic effects in vivo , reduces hemin-induced human kidney organoid fibrosis. ConclusionTogether this work establishes a hemin-induced model of kidney organoid injury and fibrosis as a new model to study renal repair and a human platform for developing AKI therapeutics.


2010 ◽  
Vol 299 (6) ◽  
pp. F1288-F1298 ◽  
Author(s):  
Nicoletta Eliopoulos ◽  
Jing Zhao ◽  
Manaf Bouchentouf ◽  
Kathy Forner ◽  
Elena Birman ◽  
...  

Acute kidney injury (AKI) can occur from the toxic side-effects of chemotherapeutic agents such as cisplatin. Bone marrow-derived mesenchymal stromal cells (MSCs) have demonstrated wide therapeutic potential often due to beneficial factors they secrete. The goal of this investigation was to evaluate in vitro the effect of human MSCs (hMSCs) secretome on cisplatin-treated human kidney cells, and in vivo the consequence of hMSCs intraperitoneal (ip) implantation in mice with AKI. Our results revealed that hMSCs-conditioned media improved survival of HK-2 human proximal tubular cells exposed to cisplatin in vitro. This enhanced survival was linked to increased expression of phosphorylated Akt (Ser473) and was reduced by a VEGF-neutralizing antibody. In vivo testing of these hMSCs established that ip administration in NOD-SCID mice decreased cisplatin-induced kidney function impairment, as demonstrated by lower blood urea nitrogen levels and higher survival. In addition, blood phosphorous and amylase levels were also significantly decreased. Moreover, hMSCs reduced the plasma levels of several inflammatory cytokines/chemokines. Immunohistochemical examination of kidneys showed less apoptotic and more proliferating cells. Furthermore, PCR indicated the presence of hMSCs in mouse kidneys, which also showed enhanced expression of phosphorylated Akt. In conclusion, our study reveals that hMSCs can exert prosurvival effects on renal cells in vitro and in vivo, suggests a paracrine contribution for kidney protective abilities of hMSCs delivered ip, and supports their clinical potential in AKI.


2020 ◽  
Vol 318 (4) ◽  
pp. F971-F978 ◽  
Author(s):  
Jenny L. M. Digby ◽  
Thitinee Vanichapol ◽  
Aneta Przepiorski ◽  
Alan J. Davidson ◽  
Veronika Sander

Acute kidney injury (AKI) remains a major global healthcare problem, and there is a need to develop human-based models to study AKI in vitro. Toward this goal, we have characterized induced pluripotent stem cell-derived human kidney organoids and their response to cisplatin, a chemotherapeutic drug that induces AKI and preferentially damages the proximal tubule. We found that a single treatment with 50 µM cisplatin induces hepatitis A virus cellular receptor 1 ( HAVCR1) and C-X-C motif chemokine ligand 8 ( CXCL8) expression, DNA damage (γH2AX), and cell death in the organoids but greatly impairs organoid viability. DNA damage was not specific to the proximal tubule but also affected the distal tubule and interstitial cell populations. This lack of specificity correlated with low expression of proximal tubule-specific SLC22A2/organic cation transporter 2 ( OCT2) for cisplatin. To improve viability, we developed a repeated low-dose regimen of 4 × 5 µM cisplatin over 7 days and found this caused less toxicity while still inducing a robust injury response that included secretion of known AKI biomarkers and inflammatory cytokines. This work validates the use of human kidney organoids to model aspects of cisplatin-induced injury, with the potential to identify new AKI biomarkers and develop better therapies.


Sign in / Sign up

Export Citation Format

Share Document