scholarly journals Wt1 haploinsufficiency induces browning of epididymal fat and alleviates metabolic dysfunction in mice on high-fat diet

Diabetologia ◽  
2021 ◽  
Author(s):  
Karin M. Kirschner ◽  
Anna Foryst-Ludwig ◽  
Sabrina Gohlke ◽  
Chen Li ◽  
Roberto E. Flores ◽  
...  

Abstract Aims/hypothesis Despite a similar fat storing function, visceral (intra-abdominal) white adipose tissue (WAT) is detrimental, whereas subcutaneous WAT is considered to protect against metabolic disease. Recent findings indicate that thermogenic genes, expressed in brown adipose tissue (BAT), can be induced primarily in subcutaneous WAT. Here, we investigate the hypothesis that the Wilms tumour gene product (WT1), which is expressed in intra-abdominal WAT but not in subcutaneous WAT and BAT, suppresses a thermogenic program in white fat cells. Methods Heterozygous Wt1 knockout mice and their wild-type littermates were examined in terms of thermogenic and adipocyte-selective gene expression. Glucose tolerance and hepatic lipid accumulation in these mice were assessed under normal chow and high-fat diet conditions. Pre-adipocytes isolated from the stromal vascular fraction of BAT were transduced with Wt1-expressing retrovirus, induced to differentiate and analysed for the expression of thermogenic and adipocyte-selective genes. Results Expression of the thermogenic genes Cpt1b and Tmem26 was enhanced and transcript levels of Ucp1 were on average more than tenfold higher in epididymal WAT of heterozygous Wt1 knockout mice compared with wild-type mice. Wt1 heterozygosity reduced epididymal WAT mass, improved whole-body glucose tolerance and alleviated severe hepatic steatosis upon diet-induced obesity in mice. Retroviral expression of WT1 in brown pre-adipocytes, which lack endogenous WT1, reduced mRNA levels of Ucp1, Ppargc1a, Cidea, Prdm16 and Cpt1b upon in vitro differentiation by 60–90%. WT1 knockdown in epididymal pre-adipocytes significantly lowered Aldh1a1 and Zfp423 transcripts, two key suppressors of the thermogenic program. Conversely, Aldh1a1 and Zfp423 mRNA levels were increased approximately five- and threefold, respectively, by retroviral expression of WT1 in brown pre-adipocytes. Conclusion/interpretation WT1 functions as a white adipocyte determination factor in epididymal WAT by suppressing thermogenic genes. Reducing Wt1 expression in this and other intra-abdominal fat depots may represent a novel treatment strategy in metabolic disease. Graphical abstract

2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Jun Muratsu ◽  
Yoshiaki Taniyama ◽  
Fumihiro Sanada ◽  
Atsuyuki Morishima ◽  
Katsuhiko Sakaguchi ◽  
...  

Abstract Background and Aims Obesity and its associated chronic inflammation in adipose tissue initiate insulin resistance, which is related to several pathologies including hypertension and atherosclerosis. Previous reports demonstrated that circulating hepatocyte growth factor (HGF) level was associated with obesity and type 2 diabetes. However, its precise role in obesity and related-pathology is unclear. Method In this experiment, cardiac-specific over-expression of human HGF in mice (HGF-Tg mice) which showed 4-5 times higher serum HGF levels than wild-type mice were used. We chose cardiac specific HGF overexpression, as other strain of HGF transgenic mice such as liver and kidney specific HGF overexpression mice develop cancer and cystic diseases, which are rare in the heart. In the present study, using HGF-Tg mice and anti-HGF neutralizing antibody (HGF-Ab), we explored the role of HGF in obese and insulin resistance induced by high fat diet (HFD) for 14 weeks (200 or 400ug/week). Results With normal chow diet (ND), there were no significant changes in body weight between WT and HGF-Tg mice. While body weight in wild-type mice fed with HFD for 14 weeks was significantly increased accompanied with insulin resistance, HGF-Tg mice prevented body weight gain and insulin resistance. Insulin resistance in obesity arises from the combination of altered functions of insulin target cells (e.g., liver, skeletal muscle, and adipose tissue) and the accumulation of macrophages that secrete pro-inflammatory mediators in adipose tissue. The accumulation of macrophages and elevated levels of inflammatory mediators in adipose tissue were significantly inhibited in HGF-Tg mice as compared to wild-type mice. In the gWAT, the mRNA levels of the mature macrophage marker F4/80, the chemoattractants, MCP-1 and CXCL2, and the inflammatory cytokines, such as TNF-α and iNOS, were significantly increased in WT mice fed with HFD. However, these levels were markedly reduced in HGF-Tg mice fed with HFD. Additionally, activation of Akt by insulin administration was significantly reduced in the gWAT SM, and liver by HFD; however, this activation was restored in HGF-Tg mice. Moreover, insulin-induced Akt signaling was decreased in HGF-Ab groups as compared to saline group under HFD condition. Importantly, HFD significantly increased the level of HGF mRNA by approximately 2 fold in gWAT, SM, and liver without changing cMet expression. All together, these data indicate that the HGF as one of the systemic gWAT, SM, and liver-derived growth factor plays a role in compensatory mechanism against insulin-resistance through the at least anti-inflammatory effect in adipose tissue. The HFD-induced obesity in wild-type mice treated with HGF-neutralizing antibody showed an exacerbated response to the glucose tolerance test. Conclusion HGF suppresses inflammation in adipose tissue induced by a high-fat diet, and as a result improves systemic insulin resistance. These gain-of-function and loss-of-function studies demonstrated that the elevated HGF level induced by HFD have protective role against obesity and insulin resistance.


2018 ◽  
Vol 50 (8) ◽  
pp. 605-614
Author(s):  
Hong He ◽  
Katie Holl ◽  
Sarah DeBehnke ◽  
Chay Teng Yeo ◽  
Polly Hansen ◽  
...  

Type 2 diabetes is a complex disorder affected by multiple genes and the environment. Our laboratory has shown that in response to a glucose challenge, two-pore channel 2 ( Tpcn2) knockout mice exhibit a decreased insulin response but normal glucose clearance, suggesting they have improved insulin sensitivity compared with wild-type mice. We tested the hypothesis that improved insulin sensitivity in Tpcn2 knockout mice would protect against the negative effects of a high fat diet. Male and female Tpcn2 knockout (KO), heterozygous (Het), and wild-type (WT) mice were fed a low-fat (LF) or high-fat (HF) diet for 24 wk. HF diet significantly increases body weight in WT mice relative to those on the LF diet; this HF diet-induced increase in body weight is blunted in the Het and KO mice. Despite the protection against diet-induced weight gain, however, Tpcn2 KO mice are not protected against HF-diet-induced changes in glucose or insulin area under the curve during glucose tolerance tests in female mice, while HF diet has no significant effect on glucose tolerance in the male mice, regardless of genotype. Glucose disappearance during an insulin tolerance test is augmented in male KO mice, consistent with our previous findings suggesting enhanced insulin sensitivity in these mice. Male KO mice exhibit increased fasting plasma total cholesterol and triglyceride concentrations relative to WT mice on the LF diet, but this difference disappears in HF diet-fed mice where there is increased cholesterol and triglycerides across all genotypes. These data demonstrate that knockout of Tpcn2 may increase insulin action in male, but not female, mice. In addition, both male and female KO mice are protected against diet-induced weight gain, but this protection is likely independent from glucose tolerance, insulin sensitivity, and plasma lipid levels.


2012 ◽  
Vol 302 (5) ◽  
pp. E532-E539 ◽  
Author(s):  
Haihong Zong ◽  
Michal Armoni ◽  
Chava Harel ◽  
Eddy Karnieli ◽  
Jeffrey E. Pessin

Conventional (whole body) CYP2E1 knockout mice displayed protection against high-fat diet-induced weight gain, obesity, and hyperlipidemia with increased energy expenditure despite normal food intake and spontaneous locomotor activity. In addition, the CYP2E1 knockout mice displayed a marked improvement in glucose tolerance on both normal chow and high-fat diets. Euglycemic-hyperinsulinemic clamps demonstrated a marked protection against high-fat diet-induced insulin resistance in CYP2E1 knockout mice, with enhanced adipose tissue glucose uptake and insulin suppression of hepatic glucose output. In parallel, adipose tissue was protected against high-fat diet-induced proinflammatory cytokine production. Taken together, these data demonstrate that the CYP2E1 deletion protects mice against high-fat diet-induced insulin resistance with improved glucose homeostasis in vivo.


2008 ◽  
Vol 294 (5) ◽  
pp. E918-E927 ◽  
Author(s):  
David L. Allen ◽  
Allison S. Cleary ◽  
Kristin J. Speaker ◽  
Sarah F. Lindsay ◽  
Jill Uyenishi ◽  
...  

Myostatin (MSTN) is a secreted growth inhibitor expressed in muscle and adipose. We sought to determine whether expression of MSTN, its receptor activin RIIb (ActRIIb), or its binding protein follistatin-like-3 (FSTL3) are altered in subcutaneous or visceral adipose or in skeletal muscle in response to obesity. MSTN and ActRIIb mRNA levels were low in subcutaneous (SQF) and visceral fat (VF) from wild-type mice but were 50- to 100-fold higher in both SQF and VF from ob/ob compared with wild-type mice. FSTL3 mRNA levels were increased in SQF but decreased in VF in ob/ob compared with wild-type mice. Moreover, MSTN mRNA levels were twofold greater in tibialis anterior (TA) from ob/ob mice, whereas ActRIIb and FSTL3 mRNA levels were unchanged. MSTN mRNA levels were also increased in TA and SQF from mice on a high-fat diet. Injection of ob/ob mice with recombinant leptin caused FSTL3 mRNA levels to decrease in both VF and SQF in ob/ob mice; MSTN and ActRIIb mRNA levels tended to decrease only in VF. Finally, MSTN mRNA levels and promoter activity were low in adipogenic 3T3-L1 cells, but an MSTN promoter-reporter construct was activated in 3T3-L1 cells by cotransfection with the adipogenic transcription factors SREBP-1c, C/EBPα, and PPARγ. These results demonstrate that expression of MSTN and its associated binding proteins can be modulated in adipose tissue and skeletal muscle by chronic obesity and suggest that alterations in their expression may contribute to the changes in growth and metabolism of lean and fat tissues occurring during obesity.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Cuiqing Liu ◽  
Guohua Lin ◽  
Guoqing Zhang ◽  
Huanhuan Wang ◽  
Hongping Yin ◽  
...  

Inflammation in insulin sensitive tissues, the visceral adipose tissue (VAT), is a central abnormality in obesity/insulin resistance (IR), with recruitment of innate immune cells such as monocytes into adipose tissue driving the development of glucose and lipoprotein dysregulation. We evaluated the role of Toll like receptor 3 (TLR3) in high fat diet-induced obesity and IR. Wild-type C57BL/6 and TLR3 -/- male mice were fed a high fat diet for 15 weeks. High fat feeding resulted in increased TLR3 expression in VAT. TLR3 deficiency attenuated the high fat diet-increased body weight, fasting blood glucose, whole body IR and impaired glucose tolerance. Morphologically, high fat diet induced adiposity and enlarged adipocyte area in VAT, which were attenuated in TLR3 -/- mice. Functionally, high fat diet induced dysregulation of adipocytokines such as downregulation of adiponectin and resistin, upregulation of leptin in VAT, with the disturbance of adiponectin and leptin was corrected in TLR3-/- mice. In addition, high fat diet inhibited insulin pathway, accompanied with decreased phosphorylation of AMPK and lowered expression of lipolysis-related enzymes such as HSL and ATGL, both at the mRNA levels and protein levels, all of which was corrected by TLR3 deficiency. Finally, TLR3 deletion suppressed the high fat feeding-mediated macrophage polarization, evidenced by increased type M1 macrophage (F4/80+/CD11c+/CD206-) infiltration and upregulation of M1 genes such as IL-6 and TNFα. TLR3 modulates high fat diet-induced IR and obesity by suppressing M1 macrophage-mediated VAT inflammation, facilitating secretion of adipocyte-derived hormones, thus enhanced AMPK activity and adipose lipolysis. These findings provide new mechanistic links between dietary factors-mediated IR and associated abnormalities in lipid metabolism and adipose inflammation.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2421-2421
Author(s):  
Constance Tom Noguchi ◽  
Heather Marie Rogers

Erythropoietin (EPO) promotes erythroid differentiation and increases glucose uptake in erythroid progenitor cells in culture. The metabolic burden associated with EPO treatment in adult mice is suggested by a decrease in body weight concomitant with increased hematocrit. Wild type male mice (C57Bl/6, age 8 months) treated with EPO showed the expected increase in hematocrit accompanied by a fall in blood glucose level and a decrease in body weight and fat mass. However, the decrease in body weight is even more evident in obese mice on a high fat diet and has also been linked to non-hematopoietic response, particularly with EPO receptor (EpoR) expression in white adipose tissue. We examined the metabolic burden of EPO treatment (3000U/kg for 3 weeks) in young, lean male mice (3 months) placed on high fat diet at the time of EPO administration. The increase in hematocrit was accompanied by decreased blood glucose level and improved glucose tolerance. However, no difference in body weight was observed between mice treated with EPO and the saline treated group, suggesting that the EPO stimulated decrease in body weight is evident primarily in older animals with greater fat mass. To determine the contribution of EpoR expression in non-hematopoietic tissue to the metabolic EPO response, young male mice with EpoR restricted to erythroid tissue (TgEpoR) were placed on high fat diet and treated with EPO. The expected increased hematocrit was also accompanied by decreased blood glucose level and improved glucose tolerance, and no change in body weight between EPO and saline treatment. The similar responses observed in young wild type and TgEpoR mice suggest that the EPO stimulated increase in glucose metabolism is associated with increased erythropoiesis rather than a direct EPO response in non-hematopoietic tissue. TgEpoR mice exhibit an age dependent increase in fat mass even greater than that observed in wild type mice, and by 8 months TgEpoR mice are obese, glucose intolerant and insulin resistant compared with wild type mice. At 8 months, TgEpoR mice treated with EPO show the increase in hematocrit and, despite the increase in fat mass, there is only a minimal decrease in body weight compared with wild type mice. These data provide evidence that in addition to the age dependent association of EPO stimulated decrease in body weight and fat mass, this decrease in body weight is due largely to EPO response related to EpoR expression in non-hematopoietic tissue. Interestingly, young male mice with targeted deletion of EpoR in adipose tissue placed on a high fat diet and treated with EPO show the increase in hematocrit and improvement in glucose tolerance, and at 8 months, the increase in hematocrit with EPO treatment is accompanied by minimal change in body weight. The similar metabolic response of these mice with targeted deletion of EpoR in adipose tissue to TgEpoR mice indicate the contribution of EpoR expression in adipose tissue to the loss of body weight and fat mass. Therefore, the metabolic burden associated with EPO stimulated erythropoiesis appears to be reflected in improved glucose metabolism and glucose tolerance with minimal or no effect on body weight, is evident in young, lean mice, and is independent of EpoR expression in non-hematopoietic tissue. In older mice, non-hematopoietic metabolic EPO response is more readily apparent as reflected in loss of body weight/fat mass, which overshadows the erythropoietic metabolic response. In combination, the metabolic response to EPO treatment results from EPO stimulated increased erythropoiesis, improved glucose metabolism and glucose tolerance, and an age dependent decrease in body weight and fat mass associated with EpoR expression in non-hematopoietic tissue, particularly in white adipose tissue. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Cody D. Smith ◽  
Chein-Te Lin ◽  
Shawna L. McMillin ◽  
Luke A. Weyrauch ◽  
Cameron Alan Schmidt ◽  
...  

Elevated mitochondrial H2O2 emission and an oxidative shift in cytosolic redox environment have been linked to high fat diet-induced insulin resistance in skeletal muscle. To test specifically whether increased flux through mitochondrial fatty acid oxidation, in the absence of elevated energy demand, directly alters mitochondrial function and redox state in muscle, two genetic models characterized by increased muscle β-oxidation flux were studied. In mice overexpressing peroxisome proliferator activated receptor-α in muscle (MCK-PPARα), lipid supported mitochondrial respiration, membrane potential (ΔΨm) and H2O2 production rate (JH2O2) were increased, which coincided with a more oxidized cytosolic redox environment, reduced muscle glucose uptake, and whole-body glucose intolerance despite an increased rate of energy expenditure. Similar results were observed in lipin-1 deficient, fatty-liver dystrophic mice, another model characterized by increased β-oxidation flux and glucose intolerance. Crossing MCAT (mitochondrial-targeted catalase) with MCK-PPARα mice normalized JH2O2 production, redox environment and glucose tolerance, but surprisingly both basal and absolute insulin-stimulated rates of glucose uptake in muscle remained depressed. Also surprising, when placed on a high fat diet MCK-PPARα mice were characterized by much lower whole body, fat and lean mass as well as improved glucose tolerance relative to wild-type mice, providing additional evidence that overexpression of PPARα in muscle imposes more extensive metabolic stress than experienced by wild-type mice on a high fat diet. Overall, the findings suggest that driving an increase in skeletal muscle fatty acid oxidation in the absence of metabolic demand imposes mitochondrial reductive stress and elicits multiple counterbalance metabolic responses in attempt to restore bioenergetic homeostasis.


2018 ◽  
Vol 314 (1) ◽  
pp. E53-E65 ◽  
Author(s):  
Ivan Torre-Villalvazo ◽  
Luz Graciela Cervantes-Pérez ◽  
Lilia G. Noriega ◽  
Jose V. Jiménez ◽  
Norma Uribe ◽  
...  

The STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) controls the activity of the electroneutral cation-chloride cotransporters (SLC12 family) and thus physiological processes such as modulation of cell volume, intracellular chloride concentration [Cl−]i, and transepithelial salt transport. Modulation of SPAK kinase activity may have an impact on hypertension and obesity, as STK39, the gene encoding SPAK, has been suggested as a hypertension and obesity susceptibility gene. In fact, the absence of SPAK activity in mice in which the activating threonine in the T loop was substituted by alanine (SPAK-KI mice) is associated with decreased blood pressure; however its consequences in metabolism have not been explored. Here, we fed wild-type and homozygous SPAK-KI mice a high-fat diet for 17 wk to evaluate weight gain, circulating substrates and hormones, energy expenditure, glucose tolerance, and insulin sensitivity. SPAK-KI mice exhibit resistance to HFD-induced obesity and hepatic steatosis associated with increased energy expenditure, higher thermogenic activity in brown adipose tissue, increased mitochondrial activity in skeletal muscle, and reduced white adipose tissue hypertrophy mediated by augmented whole body insulin sensitivity and glucose tolerance. Our data reveal a previously unrecognized role for the SPAK kinase in the regulation of energy balance, thermogenesis, and insulin sensitivity, suggesting that this kinase could be a new drug target for the treatment of obesity and the metabolic syndrome.


2021 ◽  
Vol 22 (10) ◽  
pp. 5390
Author(s):  
Qianhui Zeng ◽  
Nannan Wang ◽  
Yaru Zhang ◽  
Yuxuan Yang ◽  
Shuangshuang Li ◽  
...  

Obesity-induced adipose tissue dysfunction and disorders of glycolipid metabolism have become a worldwide research priority. Zfp217 plays a crucial role in adipogenesis of 3T3-L1 preadipocytes, but about its functions in animal models are not yet clear. To explore the role of Zfp217 in high-fat diet (HFD)-induced obese mice, global Zfp217 heterozygous knockout (Zfp217+/−) mice were constructed. Zfp217+/− mice and Zfp217+/+ mice fed a normal chow diet (NC) did not differ significantly in weight gain, percent body fat mass, glucose tolerance, or insulin sensitivity. When challenged with HFD, Zfp217+/− mice had less weight gain than Zfp217+/+ mice. Histological observations revealed that Zfp217+/− mice fed a high-fat diet had much smaller white adipocytes in inguinal white adipose tissue (iWAT). Zfp217+/− mice had improved metabolic profiles, including improved glucose tolerance, enhanced insulin sensitivity, and increased energy expenditure compared to the Zfp217+/+ mice under HFD. We found that adipogenesis-related genes were increased and metabolic thermogenesis-related genes were decreased in the iWAT of HFD-fed Zfp217+/+ mice compared to Zfp217+/− mice. In addition, adipogenesis was markedly reduced in mouse embryonic fibroblasts (MEFs) from Zfp217-deleted mice. Together, these data indicate that Zfp217 is a regulator of energy metabolism and it is likely to provide novel insight into treatment for obesity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maki Murakoshi ◽  
Tomohito Gohda ◽  
Eri Adachi ◽  
Saki Ichikawa ◽  
Shinji Hagiwara ◽  
...  

AbstractProgranulin (PGRN) has been reported to bind tumor necrosis factor (TNF) receptor and to inhibit TNFα signaling. We evaluated the effect of augmentation of TNFα signaling by PGRN deficiency on the progression of kidney injury. Eight-week-old PGRN knockout (KO) and wild-type (WT) mice were fed a standard diet or high-fat diet (HFD) for 12 weeks. Albuminuria, markers of tubular damage, and renal mRNA levels of inflammatory cytokines were higher in HFD-fed KO (KO-HFD) mice than in HFD-fed WT (WT-HFD) mice. Body weight, vacuolization in proximal tubules, and systemic and adipose tissue inflammatory markers were lower in the KO-HFD mice than in the WT-HFD mice. The renal megalin expression was lower in the KO mice than in the WT mice regardless of the diet type. The megalin expression was also reduced in mouse proximal tubule epithelial cells stimulated with TNFα and in those with PGRN knockdown by small interfering RNA in vitro. PGRN deficiency was associated with both exacerbated renal inflammation and decreased systemic inflammation, including that in the adipose tissue of mice with HFD-induced obesity. Improved tubular vacuolization in the KO-HFD mice might partially be explained by the decreased expression of megalin in proximal tubules.


Sign in / Sign up

Export Citation Format

Share Document