A critical evaluation of asymptotic sampling method for highly safe structures

Author(s):  
Gamze Bayrak ◽  
Erdem Acar
2015 ◽  
Vol 21 (4) ◽  
pp. 503-513 ◽  
Author(s):  
Mohammad Javad Vahdatirad ◽  
Mehdi Bayat ◽  
Lars Vabbersgaard Andersen ◽  
Lars Bo Ibsen

The mechanical responses of an offshore monopile foundation mounted in over-consolidated clay are calculated by employing a stochastic approach where a nonlinear p–y curve is incorporated with a finite element scheme. The random field theory is applied to represent a spatial variation for undrained shear strength of clay. Normal and Sobol sampling are employed to provide the asymptotic sampling method to generate the probability distribution of the foundation stiffnesses. Monte Carlo simulation is used as a benchmark. Asymptotic sampling accompanied with Sobol quasi random sampling demonstrates an efficient method for estimating the probability distribution of stiffnesses for the offshore monopile foundation.


2014 ◽  
Vol 969 ◽  
pp. 288-293 ◽  
Author(s):  
Adéla Hlobilová ◽  
Matěj Lepš

Sampling methods for predicting a reliability index such as Monte Carlo or Latin Hypercube Sampling are very time consuming thus advanced simulation techniques are frequently used. The asymptotic sampling is one of new techniques based on asymptotic results from reliability theory supported with a simple regression. Since the high sensitivity of the asymptotic sampling method to the control parameters has been reported, this contribution is focused on a study of the optimal parameter setting. The well-known truss structure is introduced and results with different parameter settings are presented.


1981 ◽  
Vol 44 (1) ◽  
pp. 39-59 ◽  
Author(s):  
Ewald R. Weibel ◽  
Peter Gehr ◽  
Luis M. Cruz-Orive ◽  
Alfred E. Müller ◽  
Deter K. Mwangi ◽  
...  

Author(s):  
A. Lawley ◽  
M. R. Pinnel ◽  
A. Pattnaik

As part of a broad program on composite materials, the role of the interface on the micromechanics of deformation of metal-matrix composites is being studied. The approach is to correlate elastic behavior, micro and macroyielding, flow, and fracture behavior with associated structural detail (dislocation substructure, fracture characteristics) and stress-state. This provides an understanding of the mode of deformation from an atomistic viewpoint; a critical evaluation can then be made of existing models of composite behavior based on continuum mechanics. This paper covers the electron microscopy (transmission, fractography, scanning microscopy) of two distinct forms of composite material: conventional fiber-reinforced (aluminum-stainless steel) and directionally solidified eutectic alloys (aluminum-copper). In the former, the interface is in the form of a compound and/or solid solution whereas in directionally solidified alloys, the interface consists of a precise crystallographic boundary between the two constituents of the eutectic.


2009 ◽  
Vol 00 (00) ◽  
pp. 090810030148087-29
Author(s):  
Harmik Sohi ◽  
Alka Ahuja ◽  
Farhan Jalees Ahmad ◽  
Roop Krishen Khar

2007 ◽  
Vol 23 (4) ◽  
pp. 248-257 ◽  
Author(s):  
Matthias R. Mehl ◽  
Shannon E. Holleran

Abstract. In this article, the authors provide an empirical analysis of the obtrusiveness of and participants' compliance with a relatively new psychological ambulatory assessment method, called the electronically activated recorder or EAR. The EAR is a modified portable audio-recorder that periodically records snippets of ambient sounds from participants' daily environments. In tracking moment-to-moment ambient sounds, the EAR yields an acoustic log of a person's day as it unfolds. As a naturalistic observation sampling method, it provides an observer's account of daily life and is optimized for the assessment of audible aspects of participants' naturally-occurring social behaviors and interactions. Measures of self-reported and behaviorally-assessed EAR obtrusiveness and compliance were analyzed in two samples. After an initial 2-h period of relative obtrusiveness, participants habituated to wearing the EAR and perceived it as fairly unobtrusive both in a short-term (2 days, N = 96) and a longer-term (10-11 days, N = 11) monitoring. Compliance with the method was high both during the short-term and longer-term monitoring. Somewhat reduced compliance was identified over the weekend; this effect appears to be specific to student populations. Important privacy and data confidentiality considerations around the EAR method are discussed.


2016 ◽  
Vol 37 (3) ◽  
pp. 181-193 ◽  
Author(s):  
Aire Mill ◽  
Anu Realo ◽  
Jüri Allik

Abstract. Intraindividual variability, along with the more frequently studied between-person variability, has been argued to be one of the basic building blocks of emotional experience. The aim of the current study is to examine whether intraindividual variability in affect predicts tiredness in daily life. Intraindividual variability in affect was studied with the experience sampling method in a group of 110 participants (aged between 19 and 84 years) during 14 consecutive days on seven randomly determined occasions per day. The results suggest that affect variability is a stable construct over time and situations. Our findings also demonstrate that intraindividual variability in affect has a unique role in predicting increased levels of tiredness at the momentary level as well at the level of individuals.


Sign in / Sign up

Export Citation Format

Share Document