scholarly journals Maximizing the performance of pump inducers using CFD-based multi-objective optimization

Author(s):  
Trupen Parikh ◽  
Michael Mansour ◽  
Dominique Thévenin

AbstractPump inducers are usually employed within a limited flow rate range since the performance is known to drop out significantly far from their design point. Therefore, finding an optimal geometry that ensures efficient operation for a relatively wide range of flow rates is challenging. The present study tackles this problem using multi-objective optimization to identify optimal inducer configurations, delivering high performance for a wide flow range. 3D RANS single-phase turbulent simulations were performed using the $$k-\omega$$ k - ω turbulence model. The optimization was done by employing the Non-dominated Sorting Genetic Algorithm (NSGA-II) coupled with computational fluid dynamics (CFD). An established in-house flow optimization library (OPAL++) was used to automatically control the numerical simulations. The objective is to optimize the inducer geometrical parameters to simultaneously maximize the efficiency and pressure head curves, considering different flow rates, i.e., 80% (part-load), 100% (nominal), and 150% (overload) of the optimal flow rate for the considered pump. The optimization involves 8 most relevant design parameters, i.e., the axial blade length, blade sweep angle, blade pitch, hub taper angle, tip clearance gap, blade thickness at the hub, blade thickness at the tip, and the number of blades. A total of 5178 simulations over 37 generations have been needed to get a Pareto front containing 5 optimal configurations. This article discusses quantitatively the influence of each geometrical parameter on flow behavior and inducer performance. The results reveal in general that blade length, blade sweep angle, tip clearance gap, and blade thickness should be kept low for the considered application; inducers with high hub taper angles and 3 blades lead to optimal performance.

Author(s):  
Qianhao Xiao ◽  
Jun Wang ◽  
Boyan Jiang ◽  
Weigang Yang ◽  
Xiaopei Yang

In view of the multi-objective optimization design of the squirrel cage fan for the range hood, a blade parameterization method based on the quadratic non-uniform B-spline (NUBS) determined by four control points was proposed to control the outlet angle, chord length and maximum camber of the blade. Morris-Mitchell criteria were used to obtain the optimal Latin hypercube sample based on the evolutionary operation, and different subsets of sample numbers were created to study the influence of sample numbers on the multi-objective optimization results. The Kriging model, which can accurately reflect the response relationship between design variables and optimization objectives, was established. The second-generation Non-dominated Sorting Genetic algorithm (NSGA-II) was used to optimize the volume flow rate at the best efficiency point (BEP) and the maximum volume flow rate point (MVP). The results show that the design parameters corresponding to the optimization results under different sample numbers are not the same, and the fluctuation range of the optimal design parameters is related to the influence of the design parameters on the optimization objectives. Compared with the prototype, the optimized impeller increases the radial velocity of the impeller outlet, reduces the flow loss in the volute, and increases the diffusion capacity, which improves the volume flow rate, and efficiency of the range hood system under multiple working conditions.


2019 ◽  
Vol 142 (2) ◽  
Author(s):  
H. Maral ◽  
C. B. Şenel ◽  
K. Deveci ◽  
E. Alpman ◽  
L. Kavurmacıoğlu ◽  
...  

Abstract Tip clearance is a crucial aspect of turbomachines in terms of aerodynamic and thermal performance. A gap between the blade tip surface and the stationary casing must be maintained to allow the relative motion of the blade. The leakage flow through the tip gap measurably reduces turbine performance and causes high thermal loads near the blade tip region. Several studies focused on the tip leakage flow to clarify the flow-physics in the past. The “squealer” design is one of the most common designs to reduce the adverse effects of tip leakage flow. In this paper, a genetic-algorithm-based optimization approach was applied to the conventional squealer tip design to enhance aerothermal performance. A multi-objective optimization method integrated with a meta-model was utilized to determine the optimum squealer geometry. Squealer height and width represent the design parameters which are aimed to be optimized. The objective functions for the genetic-algorithm-based optimization are the total pressure loss coefficient and Nusselt number calculated over the blade tip surface. The initial database is then enlarged iteratively using a coarse-to-fine approach to improve the prediction capability of the meta-models used. The procedure ends once the prediction errors are smaller than a prescribed level. This study indicates that squealer height and width have complex effects on the aerothermal performance, and optimization study allows to determine the optimum squealer dimensions.


Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


Author(s):  
Pranay Seshadri ◽  
Shahrokh Shahpar ◽  
Geoffrey T. Parks

Robust design is a multi-objective optimization framework for obtaining designs that perform favorably under uncertainty. In this paper robust design is used to redesign a highly loaded, transonic rotor blade with a desensitized tip clearance. The tip gap is initially assumed to be uncertain from 0.5 to 0.85% span, and characterized by a beta distribution. This uncertainty is then fed to a multi-objective optimizer and iterated upon. For each iteration of the optimizer, 3D-RANS computations for two different tip gaps are carried out. Once the simulations are complete, stochastic collocation is used to generate mean and variance in efficiency values, which form the two optimization objectives. Two such robust design studies are carried out: one using 3D blade engineering design parameters (axial sweep, tangential lean, re-cambering and skew) and the other utilizing suction and pressure side surface perturbations (with bumps). A design is selected from each Pareto front. These designs are robust: they exhibit a greater mean efficiency and lower variance in efficiency compared to the datum blade. Both robust designs were also observed to have significantly higher aft and reduced fore tip loading. This resulted in a weaker clearance vortex, wall jet and double leakage flow, all of which lead to reduced mixed-out losses. Interestingly, the robust designs did not show an increase in total pressure at the tip. It is believed that this is due to a trade-off between fore-loading the tip and obtaining a favorable total pressure rise and higher mixed-out losses, or aft-loading the tip, obtaining a lower pressure rise and lower mixed-out losses.


Author(s):  
B. R. Nichols ◽  
R. L. Fittro ◽  
C. P. Goyne

Many high-speed, rotating machines across a wide range of industrial applications depend on fluid film bearings to provide both static support of the rotor and to introduce stabilizing damping forces into the system through a developed hydrodynamic film wedge. Reduced oil supply flow rate to the bearings can cause cavitation, or a lack of a fully developed film layer, at the leading edge of the bearing pads. Reducing oil flow has the well-documented effects of higher bearing operating temperatures and decreased power losses due to shear forces. While machine efficiency may be improved with reduced lubricant flow, little experimental data on its effects on system stability and performance can be found in the literature. This study looks at overall system performance of a test rig operating under reduced oil supply flow rates by observing steady-state bearing performance indicators and baseline vibrational response of the shaft. The test rig used in this study was designed to be dynamically similar to a high-speed industrial compressor. It consists of a 1.55 m long, flexible rotor supported by two tilting pad bearings with a nominal diameter of 70 mm and a span of 1.2 m. The first bending mode is located at approximately 5,000 rpm. The tiling-pad bearings consist of five pads in a vintage, flooded bearing housing with a length to diameter ratio of 0.75, preload of 0.3, and a load-between-pad configuration. Tests were conducted over a number of operating speeds, ranging from 8,000 to 12,000 rpm, and bearing loads, while systematically reducing the oil supply flow rates provided to the bearings under each condition. For nearly all operating conditions, a low amplitude, broadband subsynchronous vibration pattern was observed in the frequency domain from approximately 0–75 Hz. When the test rig was operated at running speeds above its first bending mode, a distinctive subsynchronous peak emerged from the broadband pattern at approximately half of the running speed and at the first bending mode of the shaft. This vibration signature is often considered a classic sign of rotordynamic instability attributed to oil whip and shaft whirl phenomena. For low and moderate load conditions, the amplitude of this 0.5x subsynchronous peak increased with decreasing oil supply flow rate at all operating speeds. Under the high load condition, the subsynchronous peak was largely attenuated. A discussion on the possible sources of this subsynchronous vibration including self-excited instability and pad flutter forced vibration is provided with supporting evidence from thermoelastohydrodynamic (TEHD) bearing modeling results. Implications of reduced oil supply flow rate on system stability and operational limits are also discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jianzhong Cui ◽  
Hu Li ◽  
Dong Zhang ◽  
Yawen Xu ◽  
Fangwei Xie

Purpose The purpose of this study is to investigate the flexible dynamic characteristics about hydro-viscous drive providing meaningful insights into the credible speed-regulating behavior during the soft-start. Design/methodology/approach A comprehensive dynamic transmission model is proposed to investigate the effects of key parameters on the dynamic characteristics. To achieve a trade-off between the transmission efficiency and time proportion of hydrodynamic and mixed lubrication, a multi-objective optimization of friction pair system by genetic algorithm is presented to obtain the optimal combination of design parameters. Findings Decreasing the engagement pressure or the ratio of inner and outer radius, increasing the lubricating oil viscosity or the outer radius will result in the increase of time proportion of hydrodynamic and mixed lubrication, as well as the transmission efficiency and its maximum value. After optimization, main dynamic parameters including the oil film thickness, angular velocity of the driven disk, viscous torque and total torque show remarkable flexible transmission characteristics. Originality/value Both the dynamic transmission model and multi-objective optimization model are established to analyze the effects of main design parameters on the dynamic characteristics of hydro-viscous flexible drive.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 839
Author(s):  
Ibrahim M. Abu-Reesh

Microbial fuel cells (MFCs) are a promising technology for bioenergy generation and wastewater treatment. Various parameters affect the performance of dual-chamber MFCs, such as substrate flow rate and concentration. Performance can be assessed by power density ( PD ), current density ( CD ) production, or substrate removal efficiency ( SRE ). In this study, a mathematical model-based optimization was used to optimize the performance of an MFC using single- and multi-objective optimization (MOO) methods. Matlab’s fmincon and fminimax functions were used to solve the nonlinear constrained equations for the single- and multi-objective optimization, respectively. The fminimax method minimizes the worst-case of the two conflicting objective functions. The single-objective optimization revealed that the maximum PD ,   CD , and SRE were 2.04 W/m2, 11.08 A/m2, and 73.6%, respectively. The substrate concentration and flow rate significantly impacted the performance of the MFC. Pareto-optimal solutions were generated using the weighted sum method for maximizing the two conflicting objectives of PD and CD in addition to PD and SRE   simultaneously. The fminimax method for maximizing PD and CD showed that the compromise solution was to operate the MFC at maximum PD conditions. The model-based optimization proved to be a fast and low-cost optimization method for MFCs and it provided a better understanding of the factors affecting an MFC’s performance. The MOO provided Pareto-optimal solutions with multiple choices for practical applications depending on the purpose of using the MFCs.


1983 ◽  
Vol 245 (2) ◽  
pp. G257-G264 ◽  
Author(s):  
K. Schulze-Delrieu ◽  
J. P. Wall

The resistance generated by the gastroduodenal junction was measured in isolated cat and rabbit preparations. Cannulas were tied into the antrum and duodenum. Yield pressures were determined by increasing the pressure in one of the cannulas until flow occurred. The junctional segment of the cat maintained a high yield pressure. Yield pressures were similar in the antroduodenal and the duodenogastric direction (12.5 +/- 5.7 vs. 14.8 5.8 cmH2O) and increased on both sides to the same degree following exposure of the preparation to 100 mM [K+] and to 10(-6) M carbachol. These experimental manipulations also led to the occurrence of pressure waves in the antral cannula. Yield pressures were diminished but not abolished by exposure of the preparation to 0 [Ca2+] solution or 10(-6) M isoproterenol. Junctional segments from the rabbit did not maintain a yield pressure. Resistance across the junctional segment of both species was also measured by channeling the outflow of one of the cannulas to a flowmeter. Over a wide range of pressures, flow rates across the junctional segment of the rabbit exceeded those across the junctional segment of the cat. Carbachol and 100 mM [K+] decreased the base-line flow and increased the amplitude of intermittent decreases of flow. Isoproterenol and 0 [Ca2+] had opposite effects. Inflation of a balloon decreased the flow rate across the rabbit but not the cat junctional segment. Flow rates across the junctional segment did not differ in the antroduodenal and duodenogastric direction. The gastroduodenal junction does not act as an unidirectional valve. Pyloric resistance relates to the structure of the pyloric segment and to phasic and tonic activity of its musculature.


Author(s):  
A. Garg ◽  
Cheng Liu ◽  
A. K. Jishnu ◽  
Liang Gao ◽  
My Loan Le Phung ◽  
...  

Abstract The efficient design of battery thermal management systems (BTMSs) plays an important role in enhancing the performance, life, and safety of electric vehicles (EVs). This paper aims at designing and optimizing cold plate-based liquid cooling BTMS. Pitch sizes of channels, inlet velocity, and inlet temperature of the outermost channel are considered as design parameters. Evaluating the influence and optimization of design parameters by repeated computational fluid dynamics calculations is time consuming. To tackle this, the effect of design parameters is studied by using surrogate modeling. Optimized design variables should ensure a perfect balance between certain conflicting goals, namely, cooling efficiency, BTMS power consumption (parasitic power), and size of the battery. Therefore, the optimization problem is decoupled into hydrodynamic performance, thermodynamic performance, and mechanical structure performance. The optimal design involving multiple conflicting objectives in BTMS is solved by adopting the Thompson sampling efficient multi-objective optimization algorithm. The results obtained are as follows. The optimized average battery temperature after optimization decreased from 319.86 K to 319.2759 K by 0.18%. The standard deviation of battery temperature decreased from 5.3347 K to 5.2618 K by 1.37%. The system pressure drop decreased from 7.3211 Pa to 3.3838 Pa by 53.78%. The performance of the optimized battery cooling system has been significantly improved.


Sign in / Sign up

Export Citation Format

Share Document