A combined contact elasticity and finite element-based model for contact load and pressure distribution calculation in a frictional workpiece-fixture system

2007 ◽  
Vol 39 (5-6) ◽  
pp. 578-588 ◽  
Author(s):  
James N. Asante
Author(s):  
Guomin Ji ◽  
Nabila Berchiche ◽  
Sébastien Fouques ◽  
Thomas Sauder ◽  
Svein-Arne Reinholdtsen

The paper addresses the structural integrity assessment of lifeboat launched from floating production, storage and offloading (FPSO) vessels. The study is based on long-term drop lifeboat simulations accounting for more than 50 years of hindcast data of metocean conditions and corresponding FPSO motions. Selection of the load cases and strength analyses with high computational time is a challenge. The load cases analyzed are those corresponding to the 99th percentile of long term distribution of indicators for large slamming loads (CARXZ) or large submergence (Imaxsub). For six selected cases, the time-varying pressure distribution on the lifeboat hull during and after water impact is calculated by CFD simulations using StarCCM+. The finite element model (FEM) of the composite structure of the lifeboat is modelled by ABAQUS. Quasi-static finite element (FE) analyses are performed for the selected load cases. The structural integrity is assessed by the maximum stress and Tsai-Wu failure measure. In the present study, the load and resistance factors are combined and applied to the response. A sensitivity study is performed to investigate the non-linear load/response effects when the load factor is applied to the load. In addition, dynamic analysis is performed with the time-varying pressure distribution for selected case and the dynamic effect is investigated.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Lorenza Mattei ◽  
Francesca Di Puccio

Preclinical wear evaluation is extremely important in hip replacements, wear being one of the main causes of failure. Experimental tests are attractive but highly cost demanding; thus predictive models have been proposed in the literature, mainly based on finite element simulations. In such simulations, the effect of friction is usually disregarded, as it is considered not to affect the contact pressure distribution. However, a frictional contact could also result in a shift of the location of the nominal contact area, which can thus modify the wear maps. The aim of this study is to investigate this effect in wear prediction for metal-on-metal implants. Wear assessment was based on a purpose-developed mathematical model, extension of a previous one proposed by the same authors for metal-on-plastic implants. The innovative aspect of the present study consists in the implementation of a modified location of the nominal contact point due to friction, which takes advantage of the analytical formulation of the wear model. Simulations were carried out aimed at comparing total and resurfacing hip replacements under several gait conditions. The results highlighted that the adoption of a frictional contact yields lower linear wear rates and wider worn areas, while for the adopted friction coefficient (f=0.2), the total wear volume remains almost unchanged. The comparison between total and resurfacing replacements showed higher scaled wear volumes (wear volume divided by wear factor) for the latter, in agreement with the literature. The effect of the boundary conditions (in vivo versus in vitro) was also investigated remarking their influence on implant wear and the need to apply more physiological-like conditions in hip simulators. In conclusion although friction is usually neglected in numerical wear predictions, as it does not affect markedly the contact pressure distribution, its effect in the location of the theoretical contact point was observed to influence wear maps. This achievement could be useful for increasing the correlation between numerical and experimental simulations, usually based on the total wear volume. In order to improve the model reliability, future studies will be devoted to implement the geometry update by combining the present model to finite element analyses. On the other hand, further experimental investigations are required to get out from the wide dispersion of wear factors reported in the literature.


2012 ◽  
Vol 134 (1) ◽  
Author(s):  
A. Megalingam ◽  
M. M. Mayuram

The study of the contact stresses generated when two surfaces are in contact plays a significant role in understanding the tribology of contact pairs. Most of the present contact models are based on the statistical treatment of the single asperity contact model. For a clear understanding about the elastic-plastic behavior of two rough surfaces in contact, comparative study involving the deterministic contact model, simplified multi-asperity contact model, and modified statistical model are undertaken. In deterministic contact model analysis, a three dimensional deformable rough surface pressed against a rigid flat surface is carried out using the finite element method in steps. A simplified multi-asperity contact model is developed using actual summit radii deduced from the rough surface, applying single asperity contact model results. The resultant contact parameters like contact load, contact area, and contact pressure are compared. The asperity interaction noticed in the deterministic contact model analysis leads to wide disparity in the results. Observing the elastic-plastic transition of the summits and the sharing of contact load and contact area among the summits, modifications are employed in single asperity statistical contact model approaches in the form of a correction factor arising from asperity interaction to reduce the variations. Consequently, the modified statistical contact model and simplified multi-asperity contact model based on actual summit radius results show improved agreement with the deterministic contact model results.


2018 ◽  
Vol 15 (3) ◽  
pp. 414-421
Author(s):  
Haykel Marouani ◽  
Tarek Hassine

Purpose Pin-loaded hubs with fitted bush are used in industrial connector-type elements. They are subjected to varying radial forces leading to variable stress distribution. The literature provides various pressure distribution expressions adapted essentially for symmetric geometries and fixed load condition (circular hubs, half-infinite geometries, axial load, tangential load, etc.). This study aims to take into account the geometrical conditions of industrial connector-type elements and presents a model for pressure distribution based only on geometric parameters, maximal pressure and contact angle value for the case of fit pin-loaded hub. Design/methodology/approach The finite element computation for the contact problem shows that the pressure distribution of the pin-loaded hub under various inclined forces (from 0° to 180°) is a parabolic distribution. This distribution can be defined by three parameters which are θA, θB and Pmax. The study assumes that the distribution is symmetric and that Pmax can be modeled using force F, hub radius R, hub thickness b and the half contact angle are θA. Findings The new proposal pressure distribution parameters are easy to identify. Even for the non-symmetric pressure distribution, the study denotes that the errors on evaluating θA and θB keep the analytical model still in good agreement with finite element computations. Research limitations/implications Only the neat fit case was studied. Practical/implications Pin-loaded joints are connector-type elements used in mechanical assemblies to connect any structural components and linkage mechanisms such as connecting rod ends of automotive or shear joints for aircraft structure. Originality/value The good correlation between finite element computations and model results shows the validity of the assumptions adopted here. Analytical fatigue models, based on this stress distribution, could be derived in view of a fatigue lifetime calculation on connecting hub. Friction, pin deformation and local plastic effects under pin-loading are the main phenomena to take into account to further enrich this model.


1979 ◽  
Vol 21 (1) ◽  
pp. 25-32 ◽  
Author(s):  
M. Burdekin ◽  
N. Back ◽  
A. Cowley

This paper presents a general method for calculating the pressure distribution and the deformations in machine joints. This method assumes that the components of the joint are connected through finite elements which are defined as a function of the surface finish, material and pressure at the apparent area of contact. The system so established is solved in an iterative manner using the finite-element method, obtaining, as a final result, the pressure distribution at the contacting surfaces of the components and the deformations of the surrounding body. To prove the validity and precision of the theoretical formulation, several examples of joints are considered where the correlation between the calculated and measured deflections is shown to be good.


2012 ◽  
Vol 184-185 ◽  
pp. 408-411
Author(s):  
Zhao Jin ◽  
Jun Qi Qin ◽  
Chang Chun Di

Life test of feeding mechanism cost too much time and capital. To solve these problems, applying Reliability Enhancement Testing (RET) to the feeding mechanism was advanced. Established and checked a virtual prototype model based on ADAMS, and the chain’s contact load spectrum was obtained under both common and enhanced conditions. The stress results are gotten after its finite element analysis in ANSYS. According to the load spectrums and stress result, the life of the chain joint and enhancement coefficient are gained under calculation in ANSYS/FE_SAFE. It can provide a good reference to fatigue based RET.


Author(s):  
Rajeev Madazhy ◽  
Sheril Mathews ◽  
Erik Howard

A novel design using 3 bolts for a self-energized seal connector is proposed for quick assembly applications. Contact pressure distribution on the surface of the seal ring during initial bolt-up and subsequent operating pressure is analyzed for 3″ and 10″ connectors using Finite Element Analysis. FEA is performed on a 3″ and 10″ ANSI RF flange assembly and contact pressure distribution on the RF gasket is compared with the tapered seal ring assemblies. Hydrostatic tests are carried out for the tapered seal and ANSI bolted connectors to evaluate maximum pressure at which leak occurs for both size assemblies.


Sign in / Sign up

Export Citation Format

Share Document