Optimization of cutting parameters for improving exit delamination, surface roughness, and production rate in drilling of CFRP composites

Author(s):  
Qian Wang ◽  
Xiaoliang Jia
2021 ◽  
Author(s):  
Qian Wang ◽  
Xiaoliang Jia

Abstract Carbon fiber reinforced polymer (CFRP) composites need to be machined by operations like trimming, reaming and drilling for the dimensional tolerance and final assembly. This paper presents a cutting parameters optimization method for drilling of CFRP composites to improve hole quality and production efficiency. Hole quality indicators including exit delamination and average surface roughness are expressed as functions of cutting parameters based on the regression analysis of experimental data. Multi-objective optimization of cutting parameters for decreasing exit delamination and surface roughness, increasing material removal rate is accomplished with non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). Optimization results are large numbers of Pareto optimal solutions widely distributed in the objective space, the reliability of Pareto optimal solutions is checked with the global convergence and spacing distance. Moreover, posterior analysis is implemented to identify key solutions of better performance from the Pareto optimal solutions to facilitate the decision-making. Results show that the identified key solutions are capable of achieving satisfactory drilling performances with different preferences for exit delamination, surface roughness and material removal rate. This study provides a feasible way to determine the appropriate cutting parameters, with which demands for multiple responses could be satisfied simultaneously in practical machining operations.


Author(s):  
Murilo Pereira Lopes ◽  
Jose Rubens Gonçalves Carneiro ◽  
Gilmar Cordeiro da Silva ◽  
Carlos Eduardo Santos ◽  
Ítalo Bruno dos Santos

2020 ◽  
Vol 38 (8A) ◽  
pp. 1143-1153
Author(s):  
Yousif K. Shounia ◽  
Tahseen F. Abbas ◽  
Raed R. Shwaish

This research presents a model for prediction surface roughness in terms of process parameters in turning aluminum alloy 1200. The geometry to be machined has four rotational features: straight, taper, convex and concave, while a design of experiments was created through the Taguchi L25 orthogonal array experiments in minitab17 three factors with five Levels depth of cut (0.04, 0.06, 0.08, 0.10 and 0.12) mm, spindle speed (1200, 1400, 1600, 1800 and 2000) r.p.m and feed rate (60, 70, 80, 90 and 100) mm/min. A multiple non-linear regression model has been used which is a set of statistical extrapolation processes to estimate the relationships input variables and output which the surface roughness which prediction outside the range of the data. According to the non-linear regression model, the optimum surface roughness can be obtained at 1800 rpm of spindle speed, feed-rate of 80 mm/min and depth of cut 0.04 mm then the best surface roughness comes out to be 0.04 μm at tapper feature at depth of cut 0.01 mm and same spindle speed and feed rate pervious which gives the error of 3.23% at evolution equation.


2020 ◽  
Vol 36 ◽  
pp. 28-46
Author(s):  
Youssef Touggui ◽  
Salim Belhadi ◽  
Salah Eddine Mechraoui ◽  
Mohamed Athmane Yallese ◽  
Mustapha Temmar

Stainless steels have gained much attention to be an alternative solution for many manufacturing industries due to their high mechanical properties and corrosion resistance. However, owing to their high ductility, their low thermal conductivity and high tendency to work hardening, these materials are classed as materials difficult to machine. Therefore, the main aim of the study was to examine the effect of cutting parameters such as cutting speed, feed rate and depth of cut on the response parameters including surface roughness (Ra), tangential cutting force (Fz) and cutting power (Pc) during dry turning of AISI 316L using TiCN-TiN PVD cermet tool. As a methodology, the Taguchi L27 orthogonal array parameter design and response surface methodology (RSM)) have been used. Statistical analysis revealed feed rate affected for surface roughness (79.61%) and depth of cut impacted for tangential cutting force and cutting power (62.12% and 35.68%), respectively. According to optimization analysis based on desirability function (DF), cutting speed of 212.837 m/min, 0.08 mm/rev feed rate and 0.1 mm depth of cut were determined to acquire high machined part quality


Author(s):  
Zhipeng Jiang ◽  
Dong Gao ◽  
Yong Lu ◽  
Xianli Liu

AbstractAs the manufacturing industry is facing increasingly serious environmental problems, because of which carbon tax policies are being implemented, choosing the optimum cutting parameters during the machining process is crucial for automobile panel dies in order to achieve synergistic minimization of the environment impact, product quality, and processing efficiency. This paper presents a processing task-based evaluation method to optimize the cutting parameters, considering the trade-off among carbon emissions, surface roughness, and processing time. Three objective models and their relationships with the cutting parameters were obtained through input–output, response surface, and theoretical analyses, respectively. Examples of cylindrical turning were applied to achieve a central composite design (CCD), and relative validation experiments were applied to evaluate the proposed method. The experiments were conducted on the CAK50135di lathe cutting of AISI 1045 steel, and NSGA-II was used to obtain the Pareto fronts of the three objectives. Based on the TOPSIS method, the Pareto solution set was ranked to find the optimal solution to evaluate and select the optimal cutting parameters. An S/N ratio analysis and contour plots were applied to analyze the influence of each decision variable on the optimization objective. Finally, the changing rules of a single factor for each objective were analyzed. The results demonstrate that the proposed method is effective in finding the trade-off among the three objectives and obtaining reasonable application ranges of the cutting parameters from Pareto fronts.


2006 ◽  
Vol 532-533 ◽  
pp. 325-328
Author(s):  
Jing Ying Zhang ◽  
Si Qin Pang ◽  
Qi Xun Yu

This article discusses the problem about the method for the optimization of cutting parameters. A newly developed computational method which is different from the former was used for the optimization of cutting parameters. This method has its advantages of the controllability of the precision and higher speed when the precision requirement of the system is not very high. It can optimize cutting parameters toward the objectives of maximum production rate, minimum production cost and maximum profit rate.


2011 ◽  
Vol 121-126 ◽  
pp. 4640-4645 ◽  
Author(s):  
Shu Ren Zhang ◽  
Xue Guang Li ◽  
Jun Wang ◽  
Hui Wei Wang

Three elements of Cutting dosages have a great effect on parts surface quality and working efficiency, the best organization of cutting three elements for parts surface quality must be found before machining, in order to surface roughness and machining cost of parts, multi-objective optimization model is established in this paper, model is solved by using genetic algorithm. Based on the BP neural network of three layers, forecasting model of surface roughness is established. According to existing experiment data and optimized cutting dosages, analysis and prediction of surface roughness is done. Machining experiment is done by using optimized data. The experiment result verifies feasibility of this optimistic method and prediction method of surface roughness.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 972 ◽  
Author(s):  
Xiaojun Li ◽  
Zhanqiang Liu ◽  
Xiaoliang Liang

The application of AISI 304 austenitic stainless steel in various industrial fields has been greatly increased, but poor machinability classifies AISI 304 as a difficult-to-cut material. This study investigated the tool wear, surface topography, and optimization of cutting parameters during the machining of an AISI 304 flange component. The machining features of the AISI 304 flange included both cylindrical and end-face surfaces. Experimental results indicated that an increased cutting speed or feed aggravated tool wear and affected the machined surface roughness and surface defects simultaneously. The generation and distribution of surface defects was random. Tearing surface was the major defect in cylinder turning, while side flow was more severe in face turning. The response surface method (RSM) was applied to explore the influence of cutting parameters (e.g., cutting speed, feed, and depth of cut) on surface roughness, material removal rate (MRR), and specific cutting energy (SCE). The quadratic model of each response variable was proposed by analyzing the experimental data. The optimization of the cutting parameters was performed with a surface roughness less than the required value, the maximum MRR, and the minimum SCE as the objective. It was found that the desirable cutting parameters were v = 120 m/min, f = 0.18 mm/rev, and ap = 0.42 mm for the AISI 304 flange to be machined.


Sign in / Sign up

Export Citation Format

Share Document