Metagenomic landscape of taxonomy, metabolic potential and resistome of Sardinella longiceps gut microbiome

2021 ◽  
Vol 204 (1) ◽  
Author(s):  
Tina Kollannoor Johny ◽  
Rinu Madhu Puthusseri ◽  
Sarita Ganapathy Bhat
2019 ◽  
Author(s):  
Alessia Visconti ◽  
Caroline I. Le Roy ◽  
Fabio Rosa ◽  
Niccolo Rossi ◽  
Tiphaine C. Martin ◽  
...  

AbstractThe human gut is inhabited by a complex and metabolically active microbial ecosystem regulating host health. While many studies have focused on the effect of individual microbial taxa, the metabolic potential of the entire gut microbial ecosystem has been largely under-explored. We characterised the gut microbiome of 1,004 twins via whole shotgun metagenomic sequencing (average 39M reads per sample). We observed greater similarity, across unrelated individuals, for functional metabolic pathways (82%) than for taxonomic composition (43%). We conducted a microbiota-wide association study linking both taxonomic information and microbial metabolic pathways with 673 blood and 713 faecal metabolites (Metabolon, Inc.). Metabolic pathways associated with 34% of blood and 95% of faecal metabolites, with over 18,000 significant associations, while species-level results identified less than 3,000 associations, suggesting that coordinated action of multiple taxa is required to affect the metabolome. Finally, we estimated that the microbiome mediated a crosstalk between 71% of faecal and 15% of blood metabolites, highlighting six key species (unclassified Subdoligranulum spp., Faecalibacterium prausnitzii, Roseburia inulinivorans, Methanobrevibacter smithii, Eubacterium rectale, and Akkermansia muciniphila). Because of the large inter-person variability in microbiome composition, our results underline the importance of studying gut microbial metabolic pathways rather than focusing purely on taxonomy to find therapeutic and diagnostic targets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maia Segura-Wang ◽  
Nikolaus Grabner ◽  
Andreas Koestelbauer ◽  
Viviana Klose ◽  
Mahdi Ghanbari

Increasing evidence shows that the chicken gastrointestinal microbiota has a major effect on the modulation of metabolic functions and is correlated with economic parameters, such as feed efficiency and health. Some of these effects derive from the capacity of the chicken to digest carbohydrates and produce energy-rich metabolites such as short-chain fatty acids (SCFA) and from host-microbe interactions. In this study, we utilized information from metagenomic assembled genomes (MAGs) from chicken gastrointestinal tract (GIT) samples, with detailed annotation of carbohydrate-active enzymes (CAZymes) and genes involved in SCFA production, to better understand metabolic potential at different ages. Metagenomic sequencing of 751 chicken GIT samples was performed to reconstruct 155 MAGs, representing species which belong to six phyla, primarily Firmicutes followed by Proteobacteria. MAG diversity significantly (p < 0.001) increased with age, with early domination of Lachnospiraceae, followed by other families including Oscillospiraceae. Age-dependent shifts were observed in the abundance of genes involved in CAZyme and SCFA production, exemplified by a significant increase in glycosyltransferases (GTs) and propionic acid production pathways (p < 0.05), and a lower abundance of glycoside hydrolases (GHs) (p < 0.01). Co-occurrence analysis revealed a large cluster highly interconnected by enzymes from GT2_2 and GH3 families, underscoring their importance in the community. Furthermore, several species were identified as interaction hubs, elucidating associations of key microbes and enzymes that more likely drive temporal changes in the chicken gut microbiota, and providing further insights into the structure of the complex microbial community. This study extends prior efforts on the characterization of the chicken GIT microbiome at the taxonomic and functional levels and lays an important foundation toward better understanding the broiler chicken gut microbiome helping in the identification of modulation opportunities to increase animal health and performance.


2019 ◽  
Vol 49 (3-4) ◽  
pp. 247-256 ◽  
Author(s):  
Yueying Wang ◽  
Fang Liu ◽  
Joseph F. Urban ◽  
Oonagh Paerewijck ◽  
Peter Geldhof ◽  
...  

2019 ◽  
Author(s):  
Tanya Monaghan ◽  
Tim J. Sloan ◽  
Stephen R. Stockdale ◽  
Adam M. Blanchard ◽  
Richard D. Emes ◽  
...  

Abstract Background The impact of the rapid urbanisation of low- and middle-income countries on the human gut microbiome remains grossly understudied. Whilst the effect of urbanisation on the bacterial populations of the human gut microbiome have been documented, little is known about the influence of diet and antibiotics on the bacteriome, its virome, and antibiotic resistome. Here, we use shotgun metagenomics to comprehensively characterise the bacterial and viral fractions of the human gut microbiome, and their encoded functions, from two divergent Central Indian populations (rural agriculturalists from Melghat and an urban population in Nagpur). Additionally, we investigate cohorts with and without diarrhoea, and the potential burden of Clostridioides difficile, associated with widespread unregulated use of antibiotics in India. Results We observed distinct rural-urban differences in the gut microbiome, including viral diversity and composition, with geography exhibiting a greater influence than diarrhoeal status. Urban microbiomes were enriched in metabolic pathways responsible for degradation of drugs and organic compounds, which were predicted to relate to replacement of rural-enriched Prevotella spp. and fermentative Clostridiales with Enterobacteriaceae and Bacteroides spp. By linking phages present in the microbiome to their bacterial hosts through CRISPR spacers, a shift from Prevotella- and Eubacterium-infecting phages to Bacteroides- and Parabacteroides-infecting phages was observed in rural and urban populations, respectively. Additionally, the auxiliary metabolic potential of rural-associated phage populations was enriched for carbon and amino acid energy harvesting potential, compared to urban-associated phages. A core set of antimicrobial resistance genes was identified in both populations, particularly those conferring resistance to macrolides, tetracyclines and 1stgeneration cephalosporins, with the majority also showing evidence of resistance to fluoroquinolones, aminoglycosides and sulphonamides. In a subgroup of urban subjects with diarrhoea and high antibiotic exposure, most of whom tested positive for C. difficile toxin, evidence of resistance to fosfomycin, glycopeptides, daptomycin, 3rd generation cephalosporins and carbapenems was widespread. Conclusions We report distinct differences in antimicrobial resistance gene profiles as well as a marked variation in the burden of C. difficile disease between rural and urban populations. The key drivers of variation in urban and rural Indian microbiomes are geography, diet, industrial and healthcare exposures.


2021 ◽  
Author(s):  
Jeffrey Letourneau ◽  
Zachary C Holmes ◽  
Eric P Dallow ◽  
Heather K Durand ◽  
Sharon Jiang ◽  
...  

Many ecosystems retain an ecological memory of past conditions that affects responses to future stimuli. However, it remains unknown what mechanisms and dynamics may govern such a memory in microbial communities. Here, in both a human dietary intervention cohort and an artificial gut, we show that the human gut microbiome encodes a memory of past carbohydrate exposures. Changes in the relative abundance of primary degraders were sufficient to enhance metabolism, and these changes were mediated by transcriptional changes within hours of initial exposure. We further found that ecological memory of one carbohydrate species impacted metabolism of others. These findings demonstrate that the human gut microbiome's metabolic potential reflects dietary exposures over preceding days and changes within hours of exposure to a novel nutrient.


2017 ◽  
Vol 200 (2) ◽  
pp. 203-217 ◽  
Author(s):  
Monika Yadav ◽  
Manoj Kumar Verma ◽  
Nar Singh Chauhan

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Alessia Visconti ◽  
Caroline I. Le Roy ◽  
Fabio Rosa ◽  
Niccolò Rossi ◽  
Tiphaine C. Martin ◽  
...  

Abstract The human gut is inhabited by a complex and metabolically active microbial ecosystem. While many studies focused on the effect of individual microbial taxa on human health, their overall metabolic potential has been under-explored. Using whole-metagenome shotgun sequencing data in 1,004 twins, we first observed that unrelated subjects share, on average, almost double the number of metabolic pathways (82%) than species (43%). Then, using 673 blood and 713 faecal metabolites, we found metabolic pathways to be associated with 34% of blood and 95% of faecal metabolites, with over 18,000 significant associations, while species showed less than 3,000 associations. Finally, we estimated that the microbiome was involved in a dialogue between 71% of faecal, and 15% of blood, metabolites. This study underlines the importance of studying the microbial metabolic potential rather than focusing purely on taxonomy to find therapeutic and diagnostic targets, and provides a unique resource describing the interplay between the microbiome and the systemic and faecal metabolic environments.


Gut ◽  
2020 ◽  
pp. gutjnl-2019-319706 ◽  
Author(s):  
Shixian Hu ◽  
Arnau Vich Vila ◽  
Ranko Gacesa ◽  
Valerie Collij ◽  
Christine Stevens ◽  
...  

ObjectiveBoth the gut microbiome and host genetics are known to play significant roles in the pathogenesis of IBD. However, the interaction between these two factors and its implications in the aetiology of IBD remain underexplored. Here, we report on the influence of host genetics on the gut microbiome in IBD.DesignTo evaluate the impact of host genetics on the gut microbiota of patients with IBD, we combined whole exome sequencing of the host genome and whole genome shotgun sequencing of 1464 faecal samples from 525 patients with IBD and 939 population-based controls. We followed a four-step analysis: (1) exome-wide microbial quantitative trait loci (mbQTL) analyses, (2) a targeted approach focusing on IBD-associated genomic regions and protein truncating variants (PTVs, minor allele frequency (MAF) >5%), (3) gene-based burden tests on PTVs with MAF <5% and exome copy number variations (CNVs) with site frequency <1%, (4) joint analysis of both cohorts to identify the interactions between disease and host genetics.ResultsWe identified 12 mbQTLs, including variants in the IBD-associated genes IL17REL, MYRF, SEC16A and WDR78. For example, the decrease of the pathway acetyl-coenzyme A biosynthesis, which is involved in short chain fatty acids production, was associated with variants in the gene MYRF (false discovery rate <0.05). Changes in functional pathways involved in the metabolic potential were also observed in participants carrying rare PTVs or CNVs in CYP2D6, GPR151 and CD160 genes. These genes are known for their function in the immune system. Moreover, interaction analyses confirmed previously known IBD disease-specific mbQTLs in TNFSF15.ConclusionThis study highlights that both common and rare genetic variants affecting the immune system are key factors in shaping the gut microbiota in the context of IBD and pinpoints towards potential mechanisms for disease treatment.


2020 ◽  
Author(s):  
Jun Se-Ran ◽  
Amrita Cheema ◽  
Chhanda Bose ◽  
Marjan Boerma ◽  
Philip T Palade ◽  
...  

Abstract Background Dietary factors may modulate many complex interactions between the microbiome, metabolome, and immune system and can have an impact on the functional status of older adults. Sulforaphane (SFN), a natural compound and Nrf2-related activator of cytoprotective genes, provides a wide range of biological effects from cancer prevention to reducing insulin resistance. We have shown that SFN increased survival and improved cardiac and skeletal muscle function in a mouse model of aging. This study aims to investigate the anti-aging effects of SFN on the gut microbiome and metabolome.Results Young (6-8 weeks of age) and old (21-22 months of age) male C57BL/6J mice were provided regular rodent chow or chow containing SFN for 2 months. Fecal samples were collected right before and at the completion of SFN administration. We profiled the gut microbiome and applied global metabolomic profiling to fecal samples. Multi-omics datasets were analyzed individually and integrated to investigate the relationship between SFN diet, the microbiome, and metabolome. Microbial diversity, composition and functional capacity varied substantially across different age groups. On a global level, in old mice we observed that the SFN diet restored the gut microbiome to mimic that in young mice. In old mice, the SFN diet enriched bacteria associated with an improved intestinal barrier function and the production of anti-inflammatory compounds. In addition, the tricarboxylic acid cycle, central in cellular respiration, was decreased and amino acid metabolism-related pathways were increased. SFN diet induced metabolite biomarkers in old mice that are associated majorly with the genera, Oscillospira , Ruminococcus , and Allobaculum.Conclusion In old mice, SFN directed the metabolic potential to that of young animals. Integrated microbiome and metabolome analyses revealed metabolite biomarkers that could be modulated by bacteria and contribute to the anti-aging effects of SFN. Collectively, our results provide evidence in support of a novel hypothesis that SFN diet exerts anti-aging effects by influencing the gut microbiome and metabolome. Although further investigations are needed to identify precise mechanisms, modulating the gut microbiome by SFN may have the potential to promote healthier aging.


2021 ◽  
pp. 1-16
Author(s):  
Amal Aburahma ◽  
Sudhan Pachhain ◽  
Sayantan Roy Choudhury ◽  
Srishti Rana ◽  
Vipa Phuntumart ◽  
...  

Phenethylamines (e.g., methamphetamine) are a common source of drug toxicity. Phenethylamine-induced hyperthermia (PIH) can activate a cascade of events that may result in rhabdomyolysis, coagulopathy, and even death. Here, we review recent evidence that suggests a potential link between the gut-brain axis and PIH. Within the preoptic area of the hypothalamus, phenethylamines lead to changes in catecholamine levels, that activate the sympathetic nervous system (SNS) and increase the peripheral levels of norepinephrine (NE), resulting in: (1) the loss of heat dissipation through α<sub>1</sub> adrenergic receptor (α<sub>1</sub>-AR)-mediated vasoconstriction, (2) heat generation through β-AR activation and subsequent free fatty acid (FFA) activation of uncoupling proteins (UCPs) in brown and white adipose tissue, and (3) alteration of the gut microbiome and its link to the gut-brain axis. Recent studies have shown that phenethylamine derivatives can influence the composition of the gut microbiome and thus its metabolic potential. Phenethylamines increase the relative level of <i>Proteus</i>which has been linked to enhanced NE turnover. Bidirectional fecal microbial transplants (FMT) between PIH-tolerant and PIH-naïve rats demonstrated that the transplantation of gut microbiome can confer phenotypic hyperthermic and tolerant responses to phenethylamines. These phenethylamine-mediated changes in the gut microbiome were also associated with epigenetic changes in the mediators of thermogenesis. Given the significant role that the microbiome has been shown to play in the maintenance of body temperature, we outline current studies demonstrating the effects of phenethylamines on the gut microbiome and how these microbiome changes may mechanistically contribute to alterations in body temperature.


Sign in / Sign up

Export Citation Format

Share Document