scholarly journals Mode of action-based risk assessment of genotoxic carcinogens

2020 ◽  
Vol 94 (6) ◽  
pp. 1787-1877 ◽  
Author(s):  
Andrea Hartwig ◽  
Michael Arand ◽  
Bernd Epe ◽  
Sabine Guth ◽  
Gunnar Jahnke ◽  
...  

Abstract The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as “omics” approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.

2021 ◽  
Author(s):  
◽  
Gareth Adrian Prosser

<p>Nitroaromatic prodrugs are biologically inert compounds that are attractive candidates for anti-cancer therapy by virtue of their ability to be converted to potent DNA alkylating agents by nitroreductase (NTR) enzymes. In gene-directed enzyme-prodrug therapy (GDEPT), NTR-encoding therapeutic transgenes are delivered specifically to tumour cells, whereupon their expression confers host cell sensitivity to subsequent systemic administration of a nitroaromatic prodrug. The most well studied NTR-GDEPT system involves reduction of the aziridinyl dinitrobenzamide prodrug CB1954 by the Escherichia coli NTR NfsB. However, low affinity of this enzyme for CB1954 has so far limited the clinical efficacy of this GDEPT combination. The research described in this thesis has primarily sought to address this limitation through identification and optimisation of novel NTR enzymes with improved nitroaromatic prodrug reductase activity. Efficient assessment of NTR activity from large libraries of candidate enzymes requires a rapid and reliable screening system. An E. coli-based assay was developed to permit indirect assessment of relative rates of prodrug reduction by over-expressed NTRs via measurement of SOS response induction resulting from reduced prodrug-induced DNA damage. Using this assay in concert with other in vitro and in vivo tests, more than 50 native bacterial NTRs of diverse sequence and origin were assessed for their ability to reduce a panel of clinically attractive nitroaromatic prodrugs. Significantly, a number of NTRs were identified, particularly in the family of enzymes homologous to the native E. coli NTR NfsA, which displayed substantially improved activity over NfsB with CB1954 and other nitroaromatic prodrugs as substrates. This work also examined the roles of E. coli DNA damage repair pathways in processing of adducts induced by various nitroaromatic prodrugs. Of particular interest, nucleotide excision repair was found to be important in the processing of DNA lesions caused by 4-, but not 2-nitro group reduction products of CB1954, which suggests that there are some parallels in the mechanisms of CB1954 adduct repair in E. coli and mammalian cells. Finally, a lead NTR candidate, YcnD from Bacillus subtilis, was selected for further activity improvement through site-directed mutagenesis of active site residues. Using SOS screening, a double-site mutant was identified with 2.5-fold improved activity over the wildtype enzyme in metabolism of the novel dinitrobenzamide mustard prodrug PR-104A. In conclusion, novel NTRs with substantially improved nitroaromatic prodrug reducing activity over previously documented enzymes were identified and characterised. These results hold significance not only for the field of NTR-GDEPT, but also for other biotechnological applications in which NTRs are becoming increasingly significant, including developmental studies, antibiotic discovery and bioremediation. Furthermore, the in vitro assays developed in this study have potential utility in the discovery and evolution of other GDEPT-relevant enzymes whose prodrug metabolism is associated with genotoxicity.</p>


2021 ◽  
Author(s):  
◽  
Gareth Adrian Prosser

<p>Nitroaromatic prodrugs are biologically inert compounds that are attractive candidates for anti-cancer therapy by virtue of their ability to be converted to potent DNA alkylating agents by nitroreductase (NTR) enzymes. In gene-directed enzyme-prodrug therapy (GDEPT), NTR-encoding therapeutic transgenes are delivered specifically to tumour cells, whereupon their expression confers host cell sensitivity to subsequent systemic administration of a nitroaromatic prodrug. The most well studied NTR-GDEPT system involves reduction of the aziridinyl dinitrobenzamide prodrug CB1954 by the Escherichia coli NTR NfsB. However, low affinity of this enzyme for CB1954 has so far limited the clinical efficacy of this GDEPT combination. The research described in this thesis has primarily sought to address this limitation through identification and optimisation of novel NTR enzymes with improved nitroaromatic prodrug reductase activity. Efficient assessment of NTR activity from large libraries of candidate enzymes requires a rapid and reliable screening system. An E. coli-based assay was developed to permit indirect assessment of relative rates of prodrug reduction by over-expressed NTRs via measurement of SOS response induction resulting from reduced prodrug-induced DNA damage. Using this assay in concert with other in vitro and in vivo tests, more than 50 native bacterial NTRs of diverse sequence and origin were assessed for their ability to reduce a panel of clinically attractive nitroaromatic prodrugs. Significantly, a number of NTRs were identified, particularly in the family of enzymes homologous to the native E. coli NTR NfsA, which displayed substantially improved activity over NfsB with CB1954 and other nitroaromatic prodrugs as substrates. This work also examined the roles of E. coli DNA damage repair pathways in processing of adducts induced by various nitroaromatic prodrugs. Of particular interest, nucleotide excision repair was found to be important in the processing of DNA lesions caused by 4-, but not 2-nitro group reduction products of CB1954, which suggests that there are some parallels in the mechanisms of CB1954 adduct repair in E. coli and mammalian cells. Finally, a lead NTR candidate, YcnD from Bacillus subtilis, was selected for further activity improvement through site-directed mutagenesis of active site residues. Using SOS screening, a double-site mutant was identified with 2.5-fold improved activity over the wildtype enzyme in metabolism of the novel dinitrobenzamide mustard prodrug PR-104A. In conclusion, novel NTRs with substantially improved nitroaromatic prodrug reducing activity over previously documented enzymes were identified and characterised. These results hold significance not only for the field of NTR-GDEPT, but also for other biotechnological applications in which NTRs are becoming increasingly significant, including developmental studies, antibiotic discovery and bioremediation. Furthermore, the in vitro assays developed in this study have potential utility in the discovery and evolution of other GDEPT-relevant enzymes whose prodrug metabolism is associated with genotoxicity.</p>


2019 ◽  
Vol 47 (16) ◽  
pp. 8502-8520 ◽  
Author(s):  
Lin Zhang ◽  
Da-Qiang Li

Abstract Microrchidia family CW-type zinc finger 2 (MORC2) is a newly identified chromatin remodeling enzyme with an emerging role in DNA damage response (DDR), but the underlying mechanism remains largely unknown. Here, we show that poly(ADP-ribose) polymerase 1 (PARP1), a key chromatin-associated enzyme responsible for the synthesis of poly(ADP-ribose) (PAR) polymers in mammalian cells, interacts with and PARylates MORC2 at two residues within its conserved CW-type zinc finger domain. Following DNA damage, PARP1 recruits MORC2 to DNA damage sites and catalyzes MORC2 PARylation, which stimulates its ATPase and chromatin remodeling activities. Mutation of PARylation residues in MORC2 results in reduced cell survival after DNA damage. MORC2, in turn, stabilizes PARP1 through enhancing acetyltransferase NAT10-mediated acetylation of PARP1 at lysine 949, which blocks its ubiquitination at the same residue and subsequent degradation by E3 ubiquitin ligase CHFR. Consequently, depletion of MORC2 or expression of an acetylation-defective PARP1 mutant impairs DNA damage-induced PAR production and PAR-dependent recruitment of DNA repair proteins to DNA lesions, leading to enhanced sensitivity to genotoxic stress. Collectively, these findings uncover a previously unrecognized mechanistic link between MORC2 and PARP1 in the regulation of cellular response to DNA damage.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2098 ◽  
Author(s):  
Thom G. A. Reuvers ◽  
Roland Kanaar ◽  
Julie Nonnekens

DNA damage-inducing therapies are of tremendous value for cancer treatment and function by the direct or indirect formation of DNA lesions and subsequent inhibition of cellular proliferation. Of central importance in the cellular response to therapy-induced DNA damage is the DNA damage response (DDR), a protein network guiding both DNA damage repair and the induction of cancer-eradicating mechanisms such as apoptosis. A detailed understanding of DNA damage induction and the DDR has greatly improved our knowledge of the classical DNA damage-inducing therapies, radiotherapy and cytotoxic chemotherapy, and has paved the way for rational improvement of these treatments. Moreover, compounds targeting specific DDR proteins, selectively impairing DNA damage repair in cancer cells, form a promising novel therapy class that is now entering the clinic. In this review, we give an overview of the current state and ongoing developments, and discuss potential avenues for improvement for DNA damage-inducing therapies, with a central focus on the role of the DDR in therapy response, toxicity and resistance. Furthermore, we describe the relevance of using combination regimens containing DNA damage-inducing therapies and how they can be utilized to potentiate other anticancer strategies such as immunotherapy.


2015 ◽  
Vol 4 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Helmut Greim ◽  
Richard J. Albertini

Maintenance of cellular integrity is crucial for its physiological function, which is constantly threatened by DNA damage arising from numerous intrinsic and environmental sources.


2009 ◽  
Vol 37 (3) ◽  
pp. 495-510 ◽  
Author(s):  
John Rouse

The six Saccharomyces cerevisiae SLX genes were identified in a screen for factors required for the viability of cells lacking Sgs1, a member of the RecQ helicase family involved in processing stalled replisomes and in the maintenance of genome stability. The six SLX gene products form three distinct heterodimeric complexes, and all three have catalytic activity. Slx3–Slx2 (also known as Mus81–Mms4) and Slx1–Slx4 are both heterodimeric endonucleases with a marked specificity for branched replication fork-like DNA species, whereas Slx5–Slx8 is a SUMO (small ubiquitin-related modifier)-targeted E3 ubiquitin ligase. All three complexes play important, but distinct, roles in different aspects of the cellular response to DNA damage and perturbed DNA replication. Slx4 interacts physically not only with Slx1, but also with Rad1–Rad10 [XPF (xeroderma pigmentosum complementation group F)–ERCC1 (excision repair cross-complementing 1) in humans], another structure-specific endonuclease that participates in the repair of UV-induced DNA damage and in a subpathway of recombinational DNA DSB (double-strand break) repair. Curiously, Slx4 is essential for repair of DSBs by Rad1–Rad10, but is not required for repair of UV damage. Slx4 also promotes cellular resistance to DNA-alkylating agents that block the progression of replisomes during DNA replication, by facilitating the error-free mode of lesion bypass. This does not require Slx1 or Rad1–Rad10, and so Slx4 has several distinct roles in protecting genome stability. In the present article, I provide an overview of our current understanding of the cellular roles of the Slx proteins, paying particular attention to the advances that have been made in understanding the cellular roles of Slx4. In particular, protein–protein interactions and underlying molecular mechanisms are discussed and I draw attention to the many questions that have yet to be answered.


2012 ◽  
Vol 446 (3) ◽  
pp. 373-381 ◽  
Author(s):  
Philip M. Kubara ◽  
Sophie Kernéis-Golsteyn ◽  
Aurélie Studény ◽  
Brittany B. Lanser ◽  
Laurent Meijer ◽  
...  

In the present paper, we report that mitosis is a key step in the cellular response to genotoxic agents in human cells. Cells with damaged DNA recruit γH2AX (phosphorylated histone H2AX), phosphorylate Chk1 (checkpoint kinase 1) and arrest in the G2-phase of the cell cycle. Strikingly, nearly all cells escape the DNA damage checkpoint and become rounded, by a mechanism that correlates with Chk1 dephosphorylation. The rounded cells are alive and in mitosis as measured by low phospho-Tyr15 Cdk1 (cyclin-dependent kinase 1), high Cdk activity, active Plk1 (Polo-like kinase 1) and high phospho-histone H3 signals. This phenomenon is independent of the type of DNA damage, but is dependent on pharmacologically relevant doses of genotoxicity. Entry into mitosis is likely to be caused by checkpoint adaptation, and the HT-29 cell-based model provides a powerful experimental system in which to explore its molecular basis. We propose that mitosis with damaged DNA is a biologically significant event because it may cause genomic rearrangement in cells that survive genotoxic damage.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Mihaela Temelie ◽  
Diana Iulia Savu ◽  
Nicoleta Moisoi

Impaired mitochondrial function and accumulation of DNA damage have been recognized as hallmarks of age-related diseases. Mitochondrial dysfunction initiates protective signalling mechanisms coordinated at nuclear level particularly by modulating transcription of stress signalling factors. In turn, cellular response to DNA lesions comprises a series of interconnected complex protective pathways, which require the energetic and metabolic support of the mitochondria. These are involved in intracellular as well as in extracellular signalling of damage. Here, we have initiated a study that addresses how mitochondria-nucleus communication may occur in conditions of combined mitochondrial dysfunction and genotoxic stress and what are the consequences of this interaction on the cell system. In this work, we used cells deficient for PINK1, a mitochondrial kinase involved in mitochondrial quality control whose loss of function leads to the accumulation of dysfunctional mitochondria, challenged with inducers of DNA damage, namely, ionizing radiation and the radiomimetic bleomycin. Combined stress at the level of mitochondria and the nucleus impairs both mitochondrial and nuclear functions. Our findings revealed exacerbated sensibility to genotoxic stress in PINK1-deficient cells. The same cells showed an impaired induction of bystander phenomena following stress insults. However, these cells responded adaptively when a challenge dose was applied subsequently to a low-dose treatment to the cells. The data demonstrates that PINK1 modulates intracellular and intercellular signalling pathways, particularly adaptive responses and transmission of bystander signalling, two facets of the cell-protective mechanisms against detrimental agents.


2003 ◽  
Vol 23 (23) ◽  
pp. 8601-8613 ◽  
Author(s):  
Cayetano von Kobbe ◽  
Jeanine A. Harrigan ◽  
Alfred May ◽  
Patricia L. Opresko ◽  
Lale Dawut ◽  
...  

ABSTRACT A defect in the Werner syndrome protein (WRN) leads to the premature aging disease Werner syndrome (WS). Hallmark features of cells derived from WS patients include genomic instability and hypersensitivity to certain DNA-damaging agents. WRN contains a highly conserved region, the RecQ conserved domain, that plays a central role in protein interactions. We searched for proteins that bound to this region, and the most prominent direct interaction was with poly(ADP-ribose) polymerase 1 (PARP-1), a nuclear enzyme that protects the genome by responding to DNA damage and facilitating DNA repair. In pursuit of a functional interaction between WRN and PARP-1, we found that WS cells are deficient in the poly(ADP-ribosyl)ation pathway after they are treated with the DNA-damaging agents H2O2 and methyl methanesulfonate. After cellular stress, PARP-1 itself becomes activated, but the poly(ADP-ribosyl)ation of other cellular proteins is severely impaired in WS cells. Overexpression of the PARP-1 binding domain of WRN strongly inhibits the poly(ADP-ribosyl)ation activity in H2O2-treated control cell lines. These results indicate that the WRN/PARP-1 complex plays a key role in the cellular response to oxidative stress and alkylating agents, suggesting a role for these proteins in the base excision DNA repair pathway.


2002 ◽  
Vol 22 (24) ◽  
pp. 8635-8647 ◽  
Author(s):  
Christopher T. Richie ◽  
Carolyn Peterson ◽  
Tao Lu ◽  
Walter N. Hittelman ◽  
Phillip B. Carpenter ◽  
...  

ABSTRACT snm1 mutants of Saccharomyces cerevisiae have been shown to be specifically sensitive to DNA interstrand crosslinking agents but not sensitive to monofunctional alkylating agents, UV, or ionizing radiation. Five homologs of SNM1 have been identified in the mammalian genome and are termed SNM1, SNM1B, Artemis, ELAC2, and CPSF73. To explore the functional role of human Snm1 in response to DNA damage, we characterized the cellular distribution and dynamics of human Snm1 before and after exposure to DNA-damaging agents. Human Snm1 was found to localize to the cell nucleus in three distinct patterns. A particular cell showed diffuse nuclear staining, multiple nuclear foci, or one or two larger bodies confined to the nucleus. Upon exposure to ionizing radiation or an interstrand crosslinking agent, the number of cells exhibiting Snm1 bodies was reduced, while the population of cells with foci increased dramatically. Indirect immunofluorescence studies also indicated that the human Snm1 protein colocalized with 53BP1 before and after exposure to ionizing radiation, and a physical interaction was confirmed by coimmunoprecipitation assays. Furthermore, human Snm1 foci formed after ionizing radiation were largely coincident with foci formed by human Mre11 and to a lesser extent with those formed by BRCA1, but not with those formed by human Rad51. Finally, we mapped a region of human Snm1 of approximately 220 amino acids that was sufficient for focus formation when attached to a nuclear localization signal. Our results indicate a novel function for human Snm1 in the cellular response to double-strand breaks formed by ionizing radiation.


Sign in / Sign up

Export Citation Format

Share Document