scholarly journals Correction to: Differences in genetic diversity and divergence between brooding and broadcast spawning corals across two spatial scales in the Coral Triangle region

2021 ◽  
Vol 168 (9) ◽  
Author(s):  
Rosa Maria van der Ven ◽  
Hanneloor Heynderickx ◽  
Marc Kochzius
2021 ◽  
Vol 168 (2) ◽  
Author(s):  
Rosa Maria van der Ven ◽  
Hanneloor Heynderickx ◽  
Marc Kochzius

AbstractThe Coral Triangle region contains the world’s highest marine biodiversity, however, these reefs are also the most threatened by global and local threats. A main limitation that prevents the implementation of adequate conservation measures is that connectivity and genetic structure of populations is poorly known. The aim of this study was to investigate the genetic diversity, population structure and connectivity patterns of tropical corals in Indonesia on two different spatial scales, as well as by comparing two different reproduction strategies. Genotyping was based on microsatellite markers for 316 individual Seriatopora hystrix colonies and 142 Acropora millepora colonies sampled in Pulau Seribu and Spermonde Archipelago in 2012 and 2013. Differences in allelic diversity and a strong signature of divergence associated with historical land barriers at the Sunda Shelf were found for the brooding coral Seriatopora hystrix. However, differences in diversity and divergence were not pronounced in the broadcast spawning coral Acropora millepora. Within Spermonde Archipelago, two groups were identified: (1) sites of the sheltered inner-shelf and mid-shelf, which were found to be highly interconnected and (2) mid-shelf and outer-shelf sites characterised by higher differentiation. These patterns of contemporary dispersal barriers and genetic diversity can be explained by the differences in life history of the corals, as well as by oceanographic conditions facilitating larval dispersal. The contemporary dispersal barriers found within the Spermonde Archipelago emphasise the need for incorporating connectivity data in future conservation efforts.


2016 ◽  
Vol 3 (8) ◽  
pp. 160253 ◽  
Author(s):  
Y. C. Tay ◽  
M. W. P. Chng ◽  
W. W. G. Sew ◽  
F. E. Rheindt ◽  
K. P. P. Tun ◽  
...  

The Coral Triangle is widely considered the most important centre of marine biodiversity in Asia while areas on its periphery such as the South China Sea, have received much less interest. Here, we demonstrate that a small population of the knobbly sea star Protoreaster nodosus in Singapore has similarly high levels of genetic diversity as comparable Indonesian populations from the Coral Triangle. The high genetic diversity of this population is remarkable because it is maintained despite decades of continued anthropogenic disturbance. We postulate that it is probably due to broadcast spawning which is likely to maintain high levels of population connectivity. To test this, we analysed 6140 genome-wide single nucleotide polymorphism (SNP) loci for Singapore's populations and demonstrate a pattern of near panmixia. We here document a second case of high genetic diversity and low genetic structure for a broadcast spawner in Singapore, which suggests that such species have high resilience against anthropogenic disturbances. The study demonstrates the feasibility and power of using genome-wide SNPs for connectivity studies of marine invertebrates without a sequenced genome.


Life ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 119
Author(s):  
Adrianna Kilikowska ◽  
Monika Mioduchowska ◽  
Anna Wysocka ◽  
Agnieszka Kaczmarczyk-Ziemba ◽  
Joanna Rychlińska ◽  
...  

Mussels of the family Unionidae are important components of freshwater ecosystems. Alarmingly, the International Union for Conservation of Nature and Natural Resources Red List of Threatened Species identifies almost 200 unionid species as extinct, endangered, or threatened. Their decline is the result of human impact on freshwater habitats, and the decrease of host fish populations. The Thick Shelled River Mussel Unio crassus Philipsson, 1788 is one of the examples that has been reported to show a dramatic decline of populations. Hierarchical organization of riverine systems is supposed to reflect the genetic structure of populations inhabiting them. The main goal of this study was an assessment of the U. crassus genetic diversity in river ecosystems using hierarchical analysis. Different molecular markers, the nuclear ribosomal internal transcribed spacer ITS region, and mitochondrial DNA genes (cox1 and ndh1), were used to examine the distribution of U. crassus among-population genetic variation at multiple spatial scales (within rivers, among rivers within drainages, and between drainages of the Neman and Vistula rivers). We found high genetic structure between both drainages suggesting that in the case of the analyzed U. crassus populations we were dealing with at least two different genetic units. Only about 4% of the mtDNA variation was due to differences among populations within drainages. However, comparison of population differentiation within drainages for mtDNA also showed some genetic structure among populations within the Vistula drainage. Only one haplotype was shared among all Polish populations whereas the remainder were unique for each population despite the hydrological connection. Interestingly, some haplotypes were present in both drainages. In the case of U. crassus populations under study, the Mantel test revealed a relatively strong relationship between genetic and geographical distances. However, in detail, the pattern of genetic diversity seems to be much more complicated. Therefore, we suggest that the observed pattern of U. crassus genetic diversity distribution is shaped by both historical and current factors i.e. different routes of post glacial colonization and history of drainage systems, historical gene flow, and more recent habitat fragmentation due to anthropogenic factors.


2018 ◽  
Vol 108 (11) ◽  
pp. 1326-1336 ◽  
Author(s):  
Clive H. Bock ◽  
Carolyn A. Young ◽  
Katherine L. Stevenson ◽  
Nikki D. Charlton

Scab (caused by Venturia effusa) is the major disease of pecan in the southeastern United States. There is no information available on the fine-scale population genetic diversity or the occurrence of clonal types at small spatial scales that provides insight into inoculum sources and dispersal mechanisms, and potential opportunity for sexual reproduction. To investigate fine-scale genetic diversity, four trees of cultivar Wichita (populations) were sampled hierarchically: within each tree canopy, four approximately evenly spaced terminals (subpopulations) were selected and up to six leaflets (sub-subpopulations) were sampled from different compound leaves on each terminal. All lesions (n = 1 to 8) on each leaflet were sampled. The isolates were screened against a panel of 29 informative microsatellite markers and the resulting multilocus genotypes (MLG) subject to analysis. Mating type was also determined for each isolate. Of 335 isolates, there were 165 MLG (clonal fraction 49.3%). Nei’s unbiased measure of genetic diversity for the clone-corrected data were moderate to high (0.507). An analysis of molecular variance demonstrated differentiation (P = 0.001) between populations on leaflets within individual terminals and between terminals within trees in the tree canopies, with 93.8% of variance explained among isolates within leaflet populations. Other analyses (minimum-spanning network, Bayesian, and discriminant analysis of principal components) all indicated little affinity of isolate for source population. Of the 335 isolates, most unique MLG were found at the stratum of the individual leaflets (n = 242), with similar total numbers of unique MLG observed at the strata of the terminal (n = 170), tree (n = 166), and orchard (n = 165). Thus, the vast majority of shared clones existed on individual leaflets on a terminal at the scale of 10s of centimeters or less, indicating a notable component of short-distance dispersal. There was significant linkage disequilibrium (P < 0.001), and an analysis of Psex showed that where there were multiple encounters of an MLG, they were most probably the result of asexual reproduction (P < 0.05) but there was no evidence that asexual reproduction was involved in single or first encounters of an MLG (P > 0.05). Overall, the MAT1-1-1 and MAT1-2-1 idiomorphs were at equilibrium (73:92) and in most populations, subpopulations, and sub-subpopulations. Both mating types were frequently observed on the same leaflet. The results provide novel information on the characteristics of populations of V. effusa at fine spatial scales, and provide insights into the dispersal of the organism within and between trees. The proximity of both mating idiomorphs on single leaflets is further evidence of opportunity for development of the sexual stage in the field.


2020 ◽  
Vol 66 (4) ◽  
pp. 403-415
Author(s):  
Georgios Varsamis ◽  
Theodora Merou ◽  
Ioannis Takos ◽  
Chrisovalantis Malesios ◽  
Apostolos Manolis ◽  
...  

Abstract Fagus sylvatica in Europe is expected to be severely affected by the ongoing climate change. In this article, seed adaptive traits, in terms of morphology and germination, of F. sylvatica populations of different postglacial lineage and intrapopulation genetic diversity were evaluated. Eight plots from two geographical provenances, Evros and Drama, were selected. Provenance shaped both morphology and germination patterns, but the effect was more pronounced on germination. Seeds from Drama were larger and heavier than those from Evros but exhibited a higher degree of dormancy and slower germination. High among-plots variability on morphology and germination was also observed, especially in Evros. This higher variability was consistent with the higher level of genetic diversity observed at genomic and chloroplast DNA markers at small or larger spatial scales from previous published studies on the same plots. Results suggested the existence of different seed adaptation strategies, mainly between provenances, as a result of possible adaptation to different environmental conditions, whereas a possible influence of a generally complex pattern of admixture between different beech subspecies and postglacial lineages could not be excluded.


2020 ◽  
Author(s):  
Chloé Schmidt ◽  
Stéphane Dray ◽  
Colin J. Garroway

AbstractSpecies richness and genetic diversity are the two most fundamental products of evolution. Both are important conservation targets—species richness contributes to ecosystem functioning and human wellbeing, while genetic diversity allows those species to respond to changes in their environment and persist in the long-term. Biogeographic patterns of species richness are well-described, but we know little about patterns of genome-wide genetic diversity at similar spatial scales. Further, despite considerable attention to latitudinal trends in species richness, we still do not have a solid empirical understanding of the various processes that produce them, how they interact, or how they affect genetic diversity. Here we show that genome-wide genetic diversity and species richness share spatial structure, however, species richness hotspots tend to harbor low levels of within-species genetic variation. A single model encompassing eco-evolutionary processes related to environmental energy availability, niche availability, and proximity to humans explained 75% of variation in gene diversity and 90% of the variation in species richness. Our empirical model of both levels of biodiversity supports theory and demonstrates the importance of carrying capacity and ecological opportunity at individual and species levels for generating continent-wide genetic and species diversity gradients.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5974 ◽  
Author(s):  
Benjamin Alexander Whittaker ◽  
Sofia Consuegra ◽  
Carlos Garcia de Leaniz

Demand for lumpfish (Cyclopterus lumpus) has increased exponentially over the last decade, both for their roe, which is used as a caviar substitute, and increasingly also as cleaner fish to control sea lice in salmon farming. The species is classified as Near Threatened by the IUCN and there are growing concerns that over-exploitation of wild stocks and translocation of hatchery-reared lumpfish may compromise the genetic diversity of native populations. We carried out a comparative analysis of genetic and phenotypic variation across the species’ range to estimate the level of genetic and phenotypic differentiation, and determined patterns of gene flow at spatial scales relevant to management. We found five genetically distinct groups located in the West Atlantic (USA and Canada), Mid Atlantic (Iceland), East Atlantic (Faroe Islands, Ireland, Scotland, Norway and Denmark), English Channel (England) and Baltic Sea (Sweden). Significant phenotypic differences were also found, with Baltic lumpfish growing more slowly, attaining a higher condition factor and maturing at a smaller size than North Atlantic lumpfish. Estimates of effective population size were consistently low across the North East Atlantic (Iceland, Faroe Islands and Norway), the area where most wild lumpfish are fished for their roe, and also for the aquaculture industry. Our study suggests that some lumpfish populations are very small and have low genetic diversity, which makes them particularly vulnerable to over-exploitation and genetic introgression. To protect them we advocate curtailing fishing effort, closing the breeding cycle of the species in captivity to reduce dependence on wild stocks, restricting the translocation of genetically distinct populations, and limiting the risk of farm escapes.


PLoS ONE ◽  
2010 ◽  
Vol 5 (6) ◽  
pp. e11149 ◽  
Author(s):  
Yuichi Nakajima ◽  
Akira Nishikawa ◽  
Akira Iguchi ◽  
Kazuhiko Sakai

Sign in / Sign up

Export Citation Format

Share Document