Synergy of N-(3-oxohexanoyl)-l-homoserine lactone and tryptophan-like outer extracellular substances in granular sludge dominated by aerobic ammonia-oxidizing bacteria

2018 ◽  
Vol 102 (24) ◽  
pp. 10779-10789
Author(s):  
Li-li Wang ◽  
Ling-juan Wu ◽  
An-jie Li ◽  
Bao-lian Hou ◽  
Xiao-man Jiang
2012 ◽  
Vol 65 (3) ◽  
pp. 581-588 ◽  
Author(s):  
Naohiro Kishida ◽  
Goro Saeki ◽  
Satoshi Tsuneda ◽  
Ryuichi Sudo

In this study, the effectiveness of aerobic granular sludge as seed sludge for rapid start-up of nitrifying processes was investigated using a laboratory-scale continuous stirred-tank reactor (CSTR) fed with completely inorganic wastewater which contained a high concentration of ammonia. Even when a large amount of granular biomass was inoculated in the reactor, and the characteristics of influent wastewater were abruptly changed, excess biomass washout was not observed, and biomass concentration was kept high at the start-up period due to high settling ability of the aerobic granular sludge. As a result, an ammonia removal rate immediately increased and reached more than 1.0 kg N/m3/d within 20 days and up to 1.8 kg N/m3/d on day 39. Subsequently, high rate nitritation was stably attained during 100 days. However, nitrite accumulation had been observed for 140 days before attaining complete nitrification to nitrate. Fluorescence in situ hybridization analysis revealed the increase in amount of ammonia-oxidizing bacteria which existed in the outer edge of the granular sludge during the start-up period. This microbial ecological change would make it possible to attain high rate ammonia removal.


2014 ◽  
Vol 675-677 ◽  
pp. 633-637
Author(s):  
Ze Ya Wang ◽  
Li Ping Qiu ◽  
Li Xin Zhang ◽  
Jia Bin Wang

A set of bench scale ASBR reactors with 0.5 L effective volume were carried out to culture anaerobic ammonia oxidizing bacteria, while the anaerobic granular sludge was inoculated into these reactors as well as the operating temperature is 30±1°C, HRT is 72h and pH is approximate 7.8 in this experiment. After 60 days running, these reactors appeared anaerobic ammonia oxidation phenomenon. When the influent NH4+-N and NO2--N concentrations were approximately 50 mg/L and 70 mg/L, the NH4+-N, NO2--N and TN removal were 80%, 90% and 70%, respectively, the ratio of the NH4+-N and NO2--N removal and NO3--N production is approximately 1:1.5:0.25, close to the theoretical valve of 1:1.32:0.26 and that mainly accord with the chemical equilibrium of anaerobic ammonia oxidation mode. Furthermore, when the phenomenon of anaerobic ammonia oxidation appeared, effluent pH value was slightly higher than influent and the sludge become red.


Author(s):  
Anouk F. Duque ◽  
Vânia S. Bessa ◽  
Udo van Dongen ◽  
Merle K. de Kreuk ◽  
Raquel B. R. Mesquita ◽  
...  

Abstract The presence of toxic compounds in wastewater can cause problems for organic matter and nutrient removal. In this study, the long term effect of a model xenobiotic, 2-fluorophenol (2-FP), on ammonia oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and phosphate accumulating organisms (PAO) in aerobic granular sludge was investigated. Phosphate (P) and ammonium (N) removal efficiencies were high (>93%) and, after bioaugmentation with 2-FP degrading strain FP1, 2-FP was completely degraded. Neither N nor P removal were affected by 50 mg L−1 of 2-FP in the feed stream. Changes in the aerobic granule bacterial communities were followed. Numerical analysis of the denaturing gradient gel electrophoresis (DGGE) profiles showed low diversity for the amoA gene with an even distribution of species. PAOs, including denitrifying PAO (dPAO), and AOB were present in the 2-FP degrading granules, although dPAO population decreased throughout the 444 days reactor operation. The results demonstrated that the aerobic granules bioaugmented with FP1 strain successfully removed N, P and 2-FP simultaneously.


2018 ◽  
Vol 247 ◽  
pp. 116-124 ◽  
Author(s):  
Haijun Ma ◽  
Xuezhu Wang ◽  
Yan Zhang ◽  
Haidong Hu ◽  
Hongqiang Ren ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3004
Author(s):  
Dominika Grubba ◽  
Joanna Majtacz

Anaerobic ammonia-oxidizing bacteria have a more comprehensive metabolism than expected - there may be other electron acceptors that oxidize ammonium nitrogen under anaerobic conditions, in addition to the well-known nitrite nitrogen, one of which is sulfate in the sulfammox process. Sulfate-containing compounds are part of the medium for the anammox process, but their concentrations are not particularly high (0.2 g MgSO4 ∙ 7H2O/dm3 and 0.00625 g FeSO4/dm3). They can react to some extent with influent ammonium nitrogen. In this work, tests were carried out in two sequencing batch reactors with granular sludge. The first reactor (R1) operated in a 6 h cycle, and the concentration of the inflowing sulfate was kept at 44 mg/dm3∙d. The second reactor (R2) was operated until the 36th day in a 6 h cycle; the influencing concentration was 180 mg SO42−/dm3∙d from the 37th to 64th day in a 3 h cycle, with an influencing concentration of 360 mg SO42−/dm3∙d; and from the 65th to 90th day, the reactor was operated again in a 6 h cycle with an influencing concentration of 180 mg SO42−/dm3∙d. Along with the increased share of sulfate, both the ammonium utilization rate and specific anammox activity showed an increasing trend. As soon as the sulfate dosage was reduced, the ammonium utilization rate and specific anammox activity values dropped. Therefore, it can be concluded that sulfate-containing compounds contribute to the efficiency and rate of the anammox process.


2020 ◽  
Vol 10 (21) ◽  
pp. 7414
Author(s):  
Piotr Jachimowicz ◽  
Agnieszka Cydzik-Kwiatkowska ◽  
Patrycja Szklarz

The present study investigated the effect of aeration mode on microbial structure and efficiency of treatment of wastewater with a high concentration of suspended solids (TSS) from meat processing in sequencing batch reactors (R). R1 was constantly aerated, while in R2 intermittent aeration was applied. DNA was isolated from biomass and analyzed using next-generation sequencing (NGS) and real-time PCR. As a result, in R1 aerobic granular sludge was cultivated (SVI30 = 44 mL g−1 MLSS), while in R2 a very well-settling mixture of aerobic granules and activated sludge was obtained (SVI30 = 65 mL g−1 MLSS). Intermittent aeration significantly increased denitrification and phosphorus removal efficiencies (68% vs. 43%, 73% vs. 65%, respectively) but resulted in decomposition of extracellular polymeric substances and worse-settling properties of biomass. In both reactors, microbial structure significantly changed in time; an increase in relative abundances of Arenimonas sp., Rhodobacterace, Thauera sp., and Dokdonella sp. characterized the biomass of stable treatment of meat-processing wastewater. Constant aeration in R1 cycle favored growth of glycogen-accumulating Amaricoccus tamworthensis (10.9%) and resulted in 2.4 times and 1.4 times greater number of ammonia-oxidizing bacteria and full-denitrifiers genes in biomass, respectively, compared to the R2.


2008 ◽  
Vol 74 (11) ◽  
pp. 3559-3572 ◽  
Author(s):  
Jeanette M. Norton ◽  
Martin G. Klotz ◽  
Lisa Y. Stein ◽  
Daniel J. Arp ◽  
Peter J. Bottomley ◽  
...  

ABSTRACT The complete genome of the ammonia-oxidizing bacterium Nitrosospira multiformis (ATCC 25196T) consists of a circular chromosome and three small plasmids totaling 3,234,309 bp and encoding 2,827 putative proteins. Of the 2,827 putative proteins, 2,026 proteins have predicted functions and 801 are without conserved functional domains, yet 747 of these have similarity to other predicted proteins in databases. Gene homologs from Nitrosomonas europaea and Nitrosomonas eutropha were the best match for 42% of the predicted genes in N. multiformis. The N. multiformis genome contains three nearly identical copies of amo and hao gene clusters as large repeats. The features of N. multiformis that distinguish it from N. europaea include the presence of gene clusters encoding urease and hydrogenase, a ribulose-bisphosphate carboxylase/oxygenase-encoding operon of distinctive structure and phylogeny, and a relatively small complement of genes related to Fe acquisition. Systems for synthesis of a pyoverdine-like siderophore and for acyl-homoserine lactone were unique to N. multiformis among the sequenced genomes of ammonia-oxidizing bacteria. Gene clusters encoding proteins associated with outer membrane and cell envelope functions, including transporters, porins, exopolysaccharide synthesis, capsule formation, and protein sorting/export, were abundant. Numerous sensory transduction and response regulator gene systems directed toward sensing of the extracellular environment are described. Gene clusters for glycogen, polyphosphate, and cyanophycin storage and utilization were identified, providing mechanisms for meeting energy requirements under substrate-limited conditions. The genome of N. multiformis encodes the core pathways for chemolithoautotrophy along with adaptations for surface growth and survival in soil environments.


2016 ◽  
Vol 75 (2) ◽  
pp. 378-386 ◽  
Author(s):  
Xi Lu ◽  
Zhixuan Yin ◽  
Dominika Sobotka ◽  
Kamil Wisniewski ◽  
Krzysztof Czerwionka ◽  
...  

The aim of the study was to determine the pH effects on nitrogen removal in the anammox-enriched granular sludge. The experimental data were extracted from a 4 L completely-mixed batch reactor with the granular sludge at different initial pH values (6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5) and constant temperature T = 30 °C. Simulations were run in GPS-X 6.4 using a comprehensive mechanistic model Mantis2. Two kinetic parameters, the maximum specific growth rates of ammonia oxidizing bacteria (AOB) and anammox bacteria, were optimized at different pH scenarios. The inhibitory effects of the pH extremes on the anammox-enriched sludge were discussed in terms of the inhibition of free nitrous acid and free ammonia and metabolic mechanisms. Two different pH functions were used to examine the pH effects on the nitrogen removal kinetics. The pH optima for AOB and anammox bacteria were 7.4 and 7.6, respectively. The maximum specific growth rates of AOB and anammox bacteria at the pH optima were 0.81–0.85 d−1 and 0.36–0.38 d−1 (at T = 30 °C). The measured specific anammox activities (SAAs), predicted SAAs by Mantis2 and fitted SAAs by the Michaelis pH function at the pH optima were 0.895, 0.858 and 0.831 gN/(gVSS·d), respectively (VSS: volatile suspended solids).


2015 ◽  
Vol 73 (3) ◽  
pp. 564-575 ◽  
Author(s):  
Jonas Margot ◽  
Samuel Lochmatter ◽  
D. A. Barry ◽  
Christof Holliger

Nitrifying wastewater treatment plants (WWTPs) are more efficient than non-nitrifying WWTPs to remove several micropollutants such as pharmaceuticals and pesticides. This may be related to the activity of nitrifying organisms, such as ammonia-oxidizing bacteria (AOBs), which could possibly co-metabolically oxidize micropollutants with their ammonia monooxygenase (AMO). The role of AOBs in micropollutant removal was investigated with aerobic granular sludge (AGS), a promising technology for municipal WWTPs. Two identical laboratory-scale AGS sequencing batch reactors (AGS-SBRs) were operated with or without nitrification (inhibition of AMOs) to assess their potential for micropollutant removal. Of the 36 micropollutants studied at 1 μg l−1 in synthetic wastewater, nine were over 80% removed, but 17 were eliminated by less than 20%. Five substances (bisphenol A, naproxen, irgarol, terbutryn and iohexol) were removed better in the reactor with nitrification, probably due to co-oxidation catalysed by AMOs. However, for the removal of all other micropollutants, AOBs did not seem to play a significant role. Many compounds were better removed in aerobic condition, suggesting that aerobic heterotrophic organisms were involved in the degradation. As the AGS-SBRs did not favour the growth of such organisms, their potential for micropollutant removal appeared to be lower than that of conventional nitrifying WWTPs.


Sign in / Sign up

Export Citation Format

Share Document