Simultaneous injection of 18F-BF3- Cy3-ACUPA and non-radioactive Cy7-ACUPA probes: a promising pre-biopsy PET and ex vivo fluorescence imaging approach to evaluate prostate cancer

Author(s):  
Omer Aras ◽  
Cetin Demirdag ◽  
Harikrishna Kommidi ◽  
Ina Pavlova ◽  
Vitaly Boyko ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 428
Author(s):  
Emma Renard ◽  
Estel Collado Camps ◽  
Coline Canovas ◽  
Annemarie Kip ◽  
Martin Gotthardt ◽  
...  

Variable domains of heavy chain only antibodies (VHHs) are valuable agents for application in tumor theranostics upon conjugation to both a diagnostic probe and a therapeutic compound. Here, we optimized site-specific conjugation of the chelator DTPA and the photosensitizer IRDye700DX to anti-epidermal growth factor receptor (EGFR) VHH 7D12, for applications in nuclear imaging and photodynamic therapy. 7D12 was site-specifically equipped with bimodal probe DTPA-tetrazine-IRDye700DX using the dichlorotetrazine conjugation platform. Binding, internalization and light-induced toxicity of DTPA-IRDye700DX-7D12 were determined using EGFR-overexpressing A431 cells. Finally, ex vivo biodistribution of DTPA-IRDye700DX-7D12 in A431 tumor-bearing mice was performed, and tumor homing was visualized with SPECT and fluorescence imaging. DTPA-IRDye700DX-7D12 was retrieved with a protein recovery of 43%, and a degree of labeling of 0.56. Spectral properties of the IRDye700DX were retained upon conjugation. 111In-labeled DTPA-IRDye700DX-7D12 bound specifically to A431 cells, and they were effectively killed upon illumination. DTPA-IRDye700DX-7D12 homed to A431 xenografts in vivo, and this could be visualized with both SPECT and fluorescence imaging. In conclusion, the dichlorotetrazine platform offers a feasible method for site-specific dual-labeling of VHH 7D12, retaining binding affinity and therapeutic efficacy. The flexibility of the described approach makes it easy to vary the nature of the probes for other combinations of diagnostic and therapeutic compounds.


2021 ◽  
Vol 22 (5) ◽  
pp. 2731
Author(s):  
Piotr Garnuszek ◽  
Urszula Karczmarczyk ◽  
Michał Maurin ◽  
Arkadiusz Sikora ◽  
Jolanta Zaborniak ◽  
...  

A new PSMA ligand (PSMA-D4) containing the Glu-CO-Lys pharmacophore connected with a new linker system (L-Trp-4-Amc) and chelator DOTA was developed for radiolabeling with therapeutic radionuclides. Herein we describe the synthesis, radiolabeling, and preliminary biological evaluation of the novel PSMA-D4 ligand. Synthesized PSMA-D4 was characterized using TOF-ESI-MS, NMR, and HPLC methods. The novel compound was subject to molecular modeling with GCP-II to compare its binding mode to analogous reference compounds. The radiolabeling efficiency of PSMA-D4 with 177Lu, 90Y, 47Sc, and 225Ac was chromatographically tested. In vitro studies were carried out in PSMA-positive LNCaP tumor cells membranes. The ex vivo tissue distribution profile of the radioligands and Cerenkov luminescence imaging (CLI) was studied in LNCaP tumor-bearing mice. PSMA-D4 was synthesized in 24% yield and purity >97%. The radio complexes were obtained with high yields (>97%) and molar activity ranging from 0.11 to 17.2 GBq mcmol−1, depending on the radionuclide. In vitro assays confirmed high specific binding and affinity for all radiocomplexes. Biodistribution and imaging studies revealed high accumulation in LNCaP tumor xenografts and rapid clearance of radiocomplexes from blood and non-target tissues. These render PSMA-D4 a promising ligand for targeted therapy of prostate cancer (PCa) metastases.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Saba Choudhary ◽  
Poornema Ramasundaram ◽  
Eugenia Dziopa ◽  
Ciaran Mannion ◽  
Yair Kissin ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Zhen Liu ◽  
Alaa Nahhas ◽  
Li Liu ◽  
Earl Ada ◽  
Xinyu Zhang ◽  
...  

Ring-functionalized semiconducting polythiophene dots (Pdots) were synthesized rapidly and in one step by the hydrazine hydrate reduction of doped parent polythiophene, obtained by conventional chemical oxidation of thiophene monomer by FeCl3 in anhydrous acetonitrile. Dispersions of these Pdots display robust (pseudo) solvatochromism and solvatofluorism. Polythiophene Pdots exhibit significant cytotoxicity towards prostate cancer cells (expected) although when injected subcutaneously in vivo in live mouse, no toxicity is observed for 24 days when monitored in real time using fluorescence imaging.


2018 ◽  
Vol 115 (37) ◽  
pp. 9080-9085 ◽  
Author(s):  
Jessica A. Carr ◽  
Marianne Aellen ◽  
Daniel Franke ◽  
Peter T. C. So ◽  
Oliver T. Bruns ◽  
...  

Recent technology developments have expanded the wavelength window for biological fluorescence imaging into the shortwave infrared. We show here a mechanistic understanding of how drastic changes in fluorescence imaging contrast can arise from slight changes of imaging wavelength in the shortwave infrared. We demonstrate, in 3D tissue phantoms and in vivo in mice, that light absorption by water within biological tissue increases image contrast due to attenuation of background and highly scattered light. Wavelengths of strong tissue absorption have conventionally been avoided in fluorescence imaging to maximize photon penetration depth and photon collection, yet we demonstrate that imaging at the peak absorbance of water (near 1,450 nm) results in the highest image contrast in the shortwave infrared. Furthermore, we show, through microscopy of highly labeled ex vivo biological tissue, that the contrast improvement from water absorption enables resolution of deeper structures, resulting in a higher imaging penetration depth. We then illustrate these findings in a theoretical model. Our results suggest that the wavelength-dependent absorptivity of water is the dominant optical property contributing to image contrast, and is therefore crucial for determining the optimal imaging window in the infrared.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 766 ◽  
Author(s):  
James Beeley ◽  
Gianluca Melino ◽  
Mohammed Al-Rawahani ◽  
Mihnea Turcanu ◽  
Fraser Stewart ◽  
...  

The authors have developed a wireless fluorescence imaging capsule endoscope, potentially capable of detecting early signs of disease in the human intestine which can be missed by white-light imaging (WLI) capsule endoscopy (Figure 1). Intestinal fluorescence imaging exploits variations in tissue autofluorescence between healthy and diseased areas in response to illumination, or application of fluorescent labels which preferentially bind to diseased sites. To validate the capsule’s capability to image fluorescently-labelled tissue, a small area of a sample of ex vivo porcine small intestine was sonicated with 6 nm CdZnMg fluorescent quantum dots, and the labelled area clearly differentiated from surrounding tissue by the fluorescence imaging capsule.


2019 ◽  
Vol 144 (7) ◽  
pp. 1685-1696 ◽  
Author(s):  
Sabrina Köcher ◽  
Burkhard Beyer ◽  
Tobias Lange ◽  
Lena Nordquist ◽  
Jennifer Volquardsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document