scholarly journals Effect of Land-Use Patterns on Total Nitrogen Concentration in the Upstream Regions of the Haihe River Basin, China

2011 ◽  
Vol 51 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Ranhao Sun ◽  
Liding Chen ◽  
Wenlin Chen ◽  
Yuhe Ji
Author(s):  
Huashan Xu ◽  
Yufen Ren ◽  
Hua Zheng ◽  
Zhiyun Ouyang ◽  
Bo Jiang

During the past decades, runoff has been highly influenced by climate change and human activities in Haihe River basin, and it is important to analyze the runoff trends and the drivers of its change to guide water resources management. The Mann–Kendall method and Pettitt test were conducted to analyze the hydrological and climate trends. Data from six sub-basins were used, including runoff at six representative hydrological stations and precipitation and air temperature at 49 meteorological stations. We used multiple-regression analysis and policy review to explore the influence of climate change and human activities on the runoff change at six sub-basins. According to the results, annual runoff showed a significant downward trend at six hydrological stations (p < 0.05), and the most probable change points at all stations showed up during the period from the late 1970s to the early 1980s. Moreover, the middle and late 1990s could be another probable abrupt change point at Luan River and Chaobai River. The declining trend of the annual mean precipitation at the six sub-basins was insignificant (p > 0.05), and there were no significant abrupt change points except the Zhang River area (p < 0.05). Compared with the precipitation trend, the annual mean air temperature exhibited a significant increasing trend at all stations, and the period from the late 1980s to the early 1990s might be the most probable abrupt change points at all four sub-basins. The trend analysis and the abrupt change point analysis suggest that mean air temperature is the main climate factor that will lead to the decline in the runoff time-series, while the insignificant downward trend of the precipitation might accelerate the downward trend of the runoff data. Through elevant policy measures, including land-use reform and the construction of the Three-North (north, northeast, and northwest China) Shelter Forest, China started to implement a family-contract responsibility system and initiated the first stage of construction of the Three-North Shelter Forest Program in 1978. The land-use reform policies greatly stimulated the peasants’ initiative for land management and significantly changed the land use pattern and water use quantity in the Haihe River basin in a short time. Besides, the precipitation decreased and the air temperature rose, so an abrupt change in runoff occurred from the late 1970s to the early 1980s. The abrupt change in the runoff in the middle and late 1990s highly tallied with the construction time of the Three-North Shelter Forest Program. After near 20 years of construction of the Three-North Shelter Forest Program, the forest area increased, the forest quality had been improved, and the vegetation coverage on the underlying surface had been changed significantly, so the construction of the Three-North Shelter Forest Program was an important cause of runoff change in the middle and late 1990s. Also, change in precipitation and air temperature enlarged the effect of change in the runoff.


Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 545
Author(s):  
Yu Zhao ◽  
Xuanchang Zhang ◽  
Yang Bai ◽  
Feng Mi

Research Highlights: Land use/cover change (LUCC) has an impact on the water use efficiency (WUE) of green space in the Haihe River Basin. Background and Objectives: The Haihe River Basin has historically been one of the most water-stressed basins in China. With the increase in green space and economic development, land use and water use in the Haihe River Basin have changed significantly. In order to contribute to the sustainable development of basin water management, the impacts of LUCC on the WUE of the Haihe River Basin were assessed with the goal to support decision makers with regard to water resources planning and watershed management. Materials and Methods: (1) Moderate Resolution Imaging Spectroradiometer (MODIS) data and land use data were used to produce land use/land cover and other related maps. (2) The WUE equation was used to calculate the green space WUE. (3) The contribution rates of changes in land use were assessed to illustrate how LUCC affected green space WUE. Results: (1) Artificial surfaces increased and large areas of farmland were converted to non-agricultural use, accompanied by the addition of green space. (2) Green space WUE increased significantly from 2005 to 2015. The average annual WUE exhibited a relatively uniform spatial distribution in the Haihe River Basin. Except for the central area of urban land, the WUE of most areas exhibited an increasing trend. (3) The impact of LUCC on WUE was mainly a result from the conversion of farmland and artificial surfaces and the increase in green space. Ecological restoration and crop adjustment contributed greatly to the improvement in green space WUE in the basin. Conclusions: Green space WUE of the Haihe River Basin was significantly affected by LUCC and there is room for improvement in the WUE of green spaces in the basin. The paper concludes with recommendations for further research to assist in planning for green space to promote sustainable development related to land use and water management.


Author(s):  
nan ding ◽  
yi chen ◽  
Fulu Tao

Investigating the impacts of climate and land use changes on basin’s hydrological cycle and environment is important to provide scientific evidence to manage the trade-off and synergies among water resource, agricultural production and environment protection. In this study, we quantified the contributions of climate and land-use changes to runoff, sediment, nitrogen and phosphorus losses in the Haihe River basin since the 1980s. The results showed that (1) climate and land-use changes significantly increased evapotranspiration (ET), transport loss (TL), sediment input (SI) and output (SO), and organic nitrogen (ON) and phosphorus production (OP), with ET, SI, and ON affected most. (2) The runoff, sediment and ammonia nitrogen were affected most by climate and land use changes in the Daqing River Basin (217.3 mm), Nanyun River Basin (3917.3 ton) and Chaobai River Basin (87.6 kg/ha), respectively. (3) The impacts of climate and land-use changes had explicit spatial-temporal patterns. In the Daqing River, Yongding River and Nanyun River, the contribution of climate change to runoff and sediment kept increasing and reached 88.6%~98.2% and 63%~77.2%, respectively. In the Ziya River and Chaobai River Basin, the contribution of land use was larger, reaching 88.6%~92.8% and 59.8%~92.7%, respectively. In the Yongding River Basin, Chaobai River Basin, Ziya River Basin and Daqing River Basin, the contribution of land use to nitrogen and phosphorus loss showed an increasing trend in the past 40 years (maximum: 89.7%). By contrast, in Nanyun River and Luanhe River, the contribution of climate change to nitrogen and phosphorus loss increased more obviously (maximum: 92.1%). We quantitatively evaluated the spatial and temporal impacts of climate and land-use changes on runoff, sediment, and nitrogen and phosphorus loss, which are useful to support the optimizations of land and water resources in the River Basin.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ruonan Li ◽  
Hua Zheng ◽  
Binbin Huang ◽  
Huashan Xu ◽  
Yunkai Li

The relative contributions of different factors to the variation in surface runoff have been broadly quantified. However, little attention has been paid to how these relative contributions have changed over time. We analyzed the changes in surface runoff during 1980–2010 in six subbasins in the mountainous region of the Haihe River Basin, one of the most serious water shortage regions in China, and identified the changes in the relative contributions of climate (precipitation and temperature) and land-use to surface runoff decrease. There was a decreasing tendency in surface runoff in all subbasins, four of which had an abrupt change point around 1998. Comparing the relative contributions before and after 1998 in the four subbasins, the average influence of climate was found to decline dramatically from 67.1% to 30.5%, while that of land-use increased from 23.9% to 69.5% mainly due to the increase of forest area. Our results revealed that the primary environmental factor responsible for runoff variations was not constant, and an alternation may accentuate the impact and stimulate an abrupt change of runoff in semiarid and semihumid mountainous regions. This will help in taking tracking measures to deal with the complex water resource challenges according to different driving factors.


2014 ◽  
Vol 6 (2) ◽  
pp. 341-351 ◽  
Author(s):  
Chun Chang ◽  
Ping Feng ◽  
Fawen Li ◽  
Yunming Gao

Based on the Haihe river basin National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data from 1948 to 2010 and the precipitation data of 53 hydrological stations during 1957–2010, this study analyzed the variation of water vapor content and precipitation, and investigated the correlation between them using several statistical methods. The results showed that the annual water vapor content decreased drastically from 1948 to 2010. It was comparatively high from the late 1940s to the late 1960s and depreciated from the early 1970s. From the southeast to the northwest of the Haihe river basin, there was a decrease in water vapor content. For vertical distribution, water vapor content from the ground to 700 hPa pressure level accounted for 72.9% of the whole atmospheric layer, which indicated that the water vapor of the Haihe river basin was mainly in the air close to the ground. The precipitation in the Haihe river basin during 1957–2010 decreased very slightly. According to the correlation analysis, the precipitation and water vapor content changes showed statistically positive correlation, in addition, their break points were both in the 1970s. Furthermore, the high consistency between the precipitation efficiency and precipitation demonstrates that water vapor content is one of the important factors in the formation of precipitation.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1798
Author(s):  
Xu Wu ◽  
Su Li ◽  
Bin Liu ◽  
Dan Xu

The spatio-temporal variation of precipitation under global warming had been a research hotspot. Snowfall is an important part of precipitation, and its variabilities and trends in different regions have received great attention. In this paper, the Haihe River Basin is used as a case, and we employ the K-means clustering method to divide the basin into four sub-regions. The double temperature threshold method in the form of the exponential equation is used in this study to identify precipitation phase states, based on daily temperature, snowfall, and precipitation data from 43 meteorological stations in and around the Haihe River Basin from 1960 to 1979. Then, daily snowfall data from 1960 to 2016 are established, and the spatial and temporal variation of snowfall in the Haihe River Basin are analyzed according to the snowfall levels as determined by the national meteorological department. The results evalueted in four different zones show that (1) the snowfall at each meteorological station can be effectively estimated at an annual scale through the exponential equation, for which the correlation coefficient of each division is above 0.95, and the relative error is within 5%. (2) Except for the average snowfall and light snowfall, the snowfall and snowfall days of moderate snow, heavy snow, and snowstorm in each division are in the order of Zones III > IV > I > II. (3) The snowfall and the number of snowfall days at different levels both show a decreasing trend, except for the increasing trend of snowfall in Zone I. (4) The interannual variation trend in the snowfall at the different levels are not obvious, except for Zone III, which shows a significant decreasing trend.


Sign in / Sign up

Export Citation Format

Share Document