Efficacy of immunotherapy, gut microbiota and impact of antibiotic use: are there confounding factors?

2019 ◽  
Vol 84 (1) ◽  
pp. 223-224 ◽  
Author(s):  
G. Milano
2021 ◽  
Vol 34 (4) ◽  
pp. 253-262
Author(s):  
Amy Gallop ◽  
James Weagley ◽  
Saif-ur-Rahman Paracha ◽  
George Grossberg

The gut microbiota is known to play a role in various disease states through inflammatory, immune and endocrinologic response. Parkinson’s Disease is of particular interest as gastrointestinal involvement is one of the earlier features seen in this disease. This paper examines the relationship between gut microbiota and Parkinson’s Disease, which has a growing body of literature. Inflammation caused by gut dysbiosis is thought to increase a-synuclein aggregation and worsen motor and neurologic symptoms of Parkinson’s disease. We discuss potential treatment and supplementation to modify the microbiota. Some of these treatments require further research before recommendations can be made, such as cord blood transplant, antibiotic use, immunomodulation and fecal microbiota transplant. Other interventions, such as increasing dietary fiber, polyphenol and fermented food intake, can be made with few risks and may have some benefit for symptom relief and speed of disease progression.


Rheumatology ◽  
2019 ◽  
Vol 58 (12) ◽  
pp. 2089-2090
Author(s):  
Rajeev Aurora

2019 ◽  
Vol 8 (4) ◽  
pp. 451 ◽  
Author(s):  
Isabel Cornejo-Pareja ◽  
Gracia Martín-Núñez ◽  
M. Roca-Rodríguez ◽  
Fernando Cardona ◽  
Leticia Coin-Aragüez ◽  
...  

Changes in the intestinal microbial community and some metabolic disturbances, including obesity and type2 diabetes, are related. Glucagon-like peptide-1 (GLP-1) regulates glucose homeostasis. Microbiota have been linked to incretin secretion. Antibiotic use causes changes in microbial diversity and composition. Our aim was to evaluate the relationship between microbiota changes and GLP-1 secretion. A prospective case-control study with a Helicobacter pylori-positive patient model involving subjects under eradication therapy (omeprazole, clarithromycin, and amoxicillin). Forty patients with H. pylori infection and 20 matched participants, but negative for H. pylori antigen. Patients were evaluated before and two months after treatment. We analyzed anthropometric measurements, carbohydrate metabolism, lipid profile, and C-reactive protein. Gut microbiota composition was analyzed through 16S rRNA amplicon sequencing (IlluminaMiSeq). Eradication treatment for H. pylori decreased bacterial richness (Chao1, p = 0.041). Changes in gut microbiota profiles were observed at phylum, family, genus and species levels. GLP-1 secretion and variables of carbohydrate metabolism were improved. Correlations were seen between GLP-1 changes and variations within microbial community abundances, specifically Bifidobacterium adolescentis, the Lachnobacterium genus, and Coriobacteriaceae family. A conventional treatment to eradicate H. pylori could improve carbohydrate metabolism possibly in relation with an increase in GLP-1 secretion. GLP-1 secretion may be related to alterations in intestinal microbiota, specifically Lachnobacterium, B. adolescentis and Coriobacteriaceae.


2020 ◽  
Vol 8 (11) ◽  
pp. 1094-1105 ◽  
Author(s):  
David M Patrick ◽  
Hind Sbihi ◽  
Darlene L Y Dai ◽  
Abdullah Al Mamun ◽  
Drona Rasali ◽  
...  

Author(s):  
Jaime Ramirez ◽  
Francisco Guarner ◽  
Luis Bustos Fernandez ◽  
Aldo Maruy ◽  
Vera Lucia Sdepanian ◽  
...  

Advances in culture-independent research techniques have led to an increased understanding of the gut microbiota and the role it plays in health and disease. The intestine is populated by a complex microbial community that is organized around a network of metabolic interdependencies. It is now understood that the gut microbiota is vital for normal development and functioning of the human body, especially for the priming and maturation of the adaptive immune system. Antibiotic use can have several negative effects on the gut microbiota, including reduced species diversity, altered metabolic activity, and the selection of antibiotic-resistant organisms, which in turn can lead to antibiotic-associated diarrhea and recurrent Clostridioides difficile infections. There is also evidence that early childhood exposure to antibiotics can lead to several gastrointestinal, immunologic, and neurocognitive conditions. The increase in the use of antibiotics in recent years suggests that these problems are likely to become more acute or more prevalent in the future. Continued research into the structure and function of the gut microbiota is required to address this challenge.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S893-S893
Author(s):  
Pearlie P Chong ◽  
Pearlie P Chong ◽  
Sarah K Hussain ◽  
Nicole Poulides ◽  
Laura Coughlin ◽  
...  

Abstract Background In vitro studies have shown that enteric viruses require the gut microbiota (specific members of the Enterobacteriaceae family) for efficient infection of the gastrointestinal tract. Human norovirus (NV) infection in transplant recipients may be chronic and severe. The role of gut microbiota has not been defined in this setting. We hypothesized that gut microbiota diversity and composition are different in norovirus-infected transplant patients. Methods We performed a single-center, pilot, prospective cohort study of adult solid-organ transplant and hematopoietic stem cell transplant recipients with diarrhea. Serial fecal samples were collected and processed for gDNA. Norovirus levels were quantified by PCR and gut microbiota profiling determined by 16S rRNA gene sequencing. Results Twenty-five transplant recipients were included: 9 with NV infection and 16 without. Age (61 ± SEM 2.3 years vs. 54 ± 3.5 years; P = 0.172), duration of diarrhea prior to diagnosis (105 ± 43 days vs. 20 ± 7 days; P = 0.146), prior cumulative antibiotic use (42 ± 12 days vs. 46 ± 17 days; P = 0.646), anti-anaerobic antibiotic use (7 ± 3 days vs. 11 ± 6 days; P = 0.643) and length of hospitalization (12 ± 6 days vs. 12 ± 3 days; P = 0.624) were not different between transplant recipients with and without NV infection. Interestingly, the relative abundance of Enterobactericeae was significantly higher in NV-infected transplant recipients compared with those without NV infection (26 ± 5.8% vs. 6.2 ± 2.8%; P = 0.017, Mann–Whitney) (Figure 1). In contrast, the abundance of the Phyla Bacteroidetes (11.2 ± 5.2% vs. 26.3 ± 6.5%; P = 0.191), and Firmicutes (26.8 ± 7.6% vs. 24.9 ± 4.7%; P = 0.803), were not significantly different between those who were NV and not NV-infected. Of note, the diversity metrics of Shannon (3.5 ± 0.4 vs. 3.8 ± 0.3; P = 0.637) and inverse Simpson indices (1.3 ± 0.1 vs. 1.1±0.1; P = 0.419) were not significantly different between the two groups. Conclusion Norovirus-infected transplant recipients had a significantly higher relative abundance of Enterobactericeae in their gut microbiota compared with transplant recipients without norovirus infection. Future studies are needed to explore if this association is mechanistically important for norovirus infection. Disclosures All authors: No reported disclosures.


Fine Focus ◽  
2017 ◽  
Vol 3 (2) ◽  
pp. 89-99
Author(s):  
Victoria A. Kouritzin ◽  
Leluo Guan

In current agriculture practices, such as the dairy industry, the use of antibiotics is being discouraged due to the occurrence of antibiotic resistant bacteria. However, antibiotics are used commonly to treat calf diarrhea, which is a serious issue that negatively influences calf health, growth, and development. Recent research highlights the gut microbiota as a potential source to improve the gut health of a calf, which could minimize the antibiotic use. However, limited knowledge is available for the early life gut microbiota and its relationship with calf’s performance. It is known that the microbiota has an influence on immune system development, as well as behavioral development, and metabolic development. Further, an atypical microbial population, or a microbial shift, has been linked to autoimmune, anxiety and metabolic disorders. The process of microbial and host interactions starts at birth, suggesting that mammals are initially colonized by microbes immediately following and during birth. Differing modes of delivery, caesarian or vaginal delivery, and possibly the length of time of the birthing process, may determine initial colonization of the infant. Further, the establishment of the microbiota can be influenced by host genetics, diet, and maternal environment. Therefore, this review aims to summarize the current understanding of the neonatal mammalian microbiota obtained from human and mice studies, and to outline future research directions on microbial colonization and possible manipulation strategies that can be used to manipulate the gut microbiota in dairy calves. By understanding the process of how mammals and microbes interact it is possible to better target future research in order to solve the problem of calf diarrhea.


2020 ◽  
Author(s):  
Zhi-Yuan Wei ◽  
Jun-Hua Rao ◽  
Ming-Tian Tang ◽  
Guo-An Zhao ◽  
Qi-Chun Li ◽  
...  

Abstract Background: Previous population studies have indicated age-associated changes in the gut microbiota. However, the actual age effects on microbiota are inevitably confounded by varying environmental factors such as diets and antibiotic use in the populations. Captive crab-eating macaques reared in a well-controlled environment can provide a useful model to recapitulate dynamic age-associated changes in the healthy primate gut microbiota.Results: We show evidence supporting lifelong age-associated changes in the healthy gut microbiota of captive macaques. The Firmicutes to Bacteroidetes ratio and beta diversity but not alpha diversity changed significantly with age. The most significantly age-associated genera were mainly composed of commensals, such as Faecalibacterium . Unexpectedly, a subset of the age-associated microbes were suspicious pathogens such as Helicobacter and Campylobacter , which were enriched in infant macaques, and possibly associated with gut mucosa development. These age-associated microbes were main contributors to the gut microbiota networks. Importantly, topology analysis showed that connectivity of these networks changed with age, and its rapid decrease in elderly macaques might indicate altered microbial interactions associated with host aging. Prevotella 9 , one of the most abundant age-associated genera, was the driver responsible for the gut microbiota maturation from infants to young adults. In adults, Rikenellaceae RC9 gut group and Megasphaera were two key drivers that continuously played an active role in driving microbial community changes of across different stages of adulthood. We also showed evidence of age-associated changes in gut microbial phenotypes and functions, in particular pathways of immunomodulatory metabolite synthesis, and metabolism of lipids and carbohydrates. The driver microbes were key players involved in these functions.Conclusions: Our current study in captive macaques demonstrate evident age-associated changes during the lifelong process of healthy gut microbiota development. The enrichment of suspicious pathogens in healthy infant macaques might indicate the importance of appropriate exposure to these microbes for the developing immune system. The current study provides new insights into the pivotal role of driver microbes and microbial interactions in gut microbiota, and further underlines the importance of network analysis in microbiome studies. Our findings also provide a baseline for better understanding of disease-related changes in the primate gut microbiota.


2016 ◽  
Vol 3 (7) ◽  
pp. 296-298 ◽  
Author(s):  
Katri Korpela ◽  
Willem de Vos

Sign in / Sign up

Export Citation Format

Share Document