scholarly journals The Colonization and Establishment of the Neonatal Mammalian Microbiome

Fine Focus ◽  
2017 ◽  
Vol 3 (2) ◽  
pp. 89-99
Author(s):  
Victoria A. Kouritzin ◽  
Leluo Guan

In current agriculture practices, such as the dairy industry, the use of antibiotics is being discouraged due to the occurrence of antibiotic resistant bacteria. However, antibiotics are used commonly to treat calf diarrhea, which is a serious issue that negatively influences calf health, growth, and development. Recent research highlights the gut microbiota as a potential source to improve the gut health of a calf, which could minimize the antibiotic use. However, limited knowledge is available for the early life gut microbiota and its relationship with calf’s performance. It is known that the microbiota has an influence on immune system development, as well as behavioral development, and metabolic development. Further, an atypical microbial population, or a microbial shift, has been linked to autoimmune, anxiety and metabolic disorders. The process of microbial and host interactions starts at birth, suggesting that mammals are initially colonized by microbes immediately following and during birth. Differing modes of delivery, caesarian or vaginal delivery, and possibly the length of time of the birthing process, may determine initial colonization of the infant. Further, the establishment of the microbiota can be influenced by host genetics, diet, and maternal environment. Therefore, this review aims to summarize the current understanding of the neonatal mammalian microbiota obtained from human and mice studies, and to outline future research directions on microbial colonization and possible manipulation strategies that can be used to manipulate the gut microbiota in dairy calves. By understanding the process of how mammals and microbes interact it is possible to better target future research in order to solve the problem of calf diarrhea.

2020 ◽  
Vol 21 (2) ◽  
pp. 503 ◽  
Author(s):  
Quanhang Xiang ◽  
Xiaoyu Wu ◽  
Ye Pan ◽  
Liu Wang ◽  
Chenbin Cui ◽  
...  

Previous studies have suggested that immune system development and weaning stress are closely related to the maturation of gut microbiota. The early-life period is a “window of opportunity” for microbial colonization, which potentially has a critical impact on the development of the immune system. Fecal microbiota transplantation (FMT) and probiotics are often used to regulate gut microbial colonization. This study aims to test whether early intervention with FMT using fecal microbiota from gestation sows combined with Clostridium butyricum and Saccharomyces boulardii (FMT-CS) administration could promote the maturation of gut microbiota and development of immune system in piglets. Piglets were assigned to control (n = 84) and FMT-CS treatment (n = 106), which were treated with placebo and bacterial suspension during the first three days after birth, respectively. By 16S rRNA gene sequencing, we found that FMT-CS increased the α-diversity and reduced the unweighted UniFrac distances of the OTU community. Besides, FMT-CS increased the relative abundance of beneficial bacteria, while decreasing that of opportunistic pathogens. FMT-CS also enhanced the relative abundance of genes related to cofactors and vitamin, energy, and amino acid metabolisms during the early-life period. ELISA analysis revealed that FMT-CS gave rise to the plasma concentrations of IL-23, IL-17, and IL-22, as well as the plasma levels of anti-M.hyo and anti-PCV2 antibodies. Furthermore, the FMT-CS-treated piglets showed decreases in inflammation levels and oxidative stress injury, and improvement of intestinal barrier function after weaning as well. Taken together, our results suggest that early-life intervention with FMT-CS could promote the development of innate and adaptive immune system and vaccine efficacy, and subsequently alleviate weaning stress through promoting the maturation of gut microbiota in piglets.


2020 ◽  
Vol 26 (5-6) ◽  
pp. 487-502 ◽  
Author(s):  
Claudia Vuotto ◽  
Luca Battistini ◽  
Carlo Caltagirone ◽  
Giovanna Borsellino

The gut microbiota, consisting of bacteria, fungi, archaea, viruses, and protozoa, together with their collective genomes (microbiome), plays a key role in immune system development and maturation, gut morphology, and in performing essential metabolic functions. Several factors, including lifestyle, body mass index, diet, antibiotic use, and the environment, influence the balance of the intestinal microbiota, whose alterations (the so-called dysbiosis) in recent years have been associated with the onset and/or progression of neurological and neuropsychiatric disorders. The purpose of this narrative review is to provide an overview of the possible involvement of the microbiota-gut-brain axis in the pathogenesis of diseases of the central nervous system, with a special focus on key issues and common misjudgments on the potential contribution of specific microorganisms.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 181-181
Author(s):  
Martin Lessard ◽  
Mylène Blais ◽  
Guylaine Talbot ◽  
J Jacques Matte ◽  
Ann Letellier ◽  
...  

Abstract Lactation, feeding conditions, microbial interventions and piglet growth in the first few weeks of life have important impact on the intestinal microbiota establishment and immune system development of piglets. Indeed, colostrum and milk contain various bioactive components such as immune factors, antimicrobial peptides and oligosaccharides that contribute to maintain intestinal homeostasis and regulate interactions between microbiota and host immune system. Recent results revealed that low birth weight piglet (LBWP) with poor weight gain during the first two weeks of life develop different intestinal microbiota and immune response profiles compared to high BWP (HBWP) littermates. Consequently, piglets within litters may have different resilience to infections after weaning and benefit from feed additives in a specific manner. A study has been performed to evaluate the potential of bovine colostrum extract (BC) as replacement to plasma proteins for improving gut health and resilience to Salmonella infection in piglets. Results revealed that in weaned piglets fed BC, intestinal microbiota was differently modulated and bacterial dysbiosis induced by Salmonella was restored faster. Moreover, expression of genes involved in innate immunity such as β-defensin-2 and glutathione peroxidase-2 was respectively down- and up-regulated in BC fed piglets. A combination of dietary supplementation with BC, cupper and vitamins A and D has also been tested in LBWP and HBWP, and there is clear evidence that BC in combination with other feed additives promote growth and gut health in both LBWP and HBWP. The porcine intestinal epithelial cell line IPEC-J2 was used to better understand the functional properties of BC. Results indicated that BC improves wound healing, enhances barrier function and modulates the expression of several genes involved in innate immune response. Finally, as microbial intervention, the potential of fecal transplantation to modulate intestinal microbiota and immune system development of piglets is under investigation and will be discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Li Chunxi ◽  
Liu Haiyue ◽  
Lin Yanxia ◽  
Pan Jianbing ◽  
Su Jin

Human body surfaces, such as the skin, intestines, and respiratory and urogenital tracts, are colonized by a large number of microorganisms, including bacteria, fungi, and viruses, with the gut being the most densely and extensively colonized organ. The microbiome plays an essential role in immune system development and tissue homeostasis. Gut microbiota dysbiosis not only modulates the immune responses of the gastrointestinal (GI) tract but also impacts the immunity of distal organs, such as the lung, further affecting lung health and respiratory diseases. Here, we review the recent evidence of the correlations and underlying mechanisms of the relationship between the gut microbiota and common respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), lung cancer, and respiratory infection, and probiotic development as a therapeutic intervention for these diseases.


2021 ◽  
Vol 9 (2) ◽  
pp. 20
Author(s):  
Rwik Sen ◽  
Christopher Barnes

Epigenetic modifications regulate gene expression for development, immune response, disease, and other processes. A major role of epigenetics is to control the dynamics of chromatin structure, i.e., the condensed packaging of DNA around histone proteins in eukaryotic nuclei. Key epigenetic factors include enzymes for histone modifications and DNA methylation, non-coding RNAs, and prions. Epigenetic modifications are heritable but during embryonic development, most parental epigenetic marks are erased and reset. Interestingly, some epigenetic modifications, that may be resulting from immune response to stimuli, can escape remodeling and transmit to subsequent generations who are not exposed to those stimuli. This phenomenon is called transgenerational epigenetic inheritance if the epigenetic phenotype persists beyond the third generation in female germlines and second generation in male germlines. Although its primary function is likely immune response for survival, its role in the development and functioning of the immune system is not extensively explored, despite studies reporting transgenerational inheritance of stress-induced epigenetic modifications resulting in immune disorders. Hence, this review draws from studies on transgenerational epigenetic inheritance, immune system development and function, high-throughput epigenetics tools to study those phenomena, and relevant clinical trials, to focus on their significance and deeper understanding for future research, therapeutic developments, and various applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Meghan B. Azad ◽  
Anita L. Kozyrskyj

Perinatal programming, a dominant theory for the origins of cardiovascular disease, proposes that environmental stimuli influence developmental pathways during critical periods of prenatal and postnatal development, inducing permanent changes in metabolism. In this paper, we present evidence for the perinatal programming of asthma via the intestinal microbiome. While epigenetic mechanisms continue to provide new explanations for the programming hypothesis of asthma development, it is increasingly apparent that the intestinal microbiota plays an independent and potentially interactive role. Commensal gut bacteria are essential to immune system development, and exposures disrupting the infant gut microbiota have been linked to asthma. This paper summarizes the recent findings that implicate caesarean delivery, breastfeeding, perinatal stress, probiotics, and antibiotics as modifiers of infant gut microbiota in the development of asthma.


2017 ◽  
Vol 8 (4) ◽  
pp. 1622-1626 ◽  
Author(s):  
Carlos Gómez-Gallego ◽  
María García Romo ◽  
Rafael Frías ◽  
María Jesús Periago ◽  
Gaspar Ros ◽  
...  

Previous studies using a BALB/cOlaHsd model have shown the impact that the supplementation of infant formula with polyamines has on the modulation of microbial colonization and immune system development.


2021 ◽  
Vol 8 ◽  
Author(s):  
Anna Socha-Banasiak ◽  
Malwina Pawłowska ◽  
Elżbieta Czkwianianc ◽  
Kateryna Pierzynowska

Differentiation of the digestive tube and formation of the gut unit as a whole, are regulated by environmental factors through epigenetic modifications which enhance cellular plasticity. The critical period of DNA imprinting lasts from conception until approximately the 1,000th day of human life. During pregnancy, besides agents that may directly promote epigenetic programming (e.g., folate, zinc, and choline supplementation), some factors (e.g., antibiotic use, dietary components) can affect the composition of the mother's microbiota, in turn affecting the fetal microbiome which interacts with the offspring's intestinal epithelial cells. According to available literature that confirms intrauterine microbial colonization, the impact of the microbiome and its metabolites on the genome seems to be key in fetal development, including functional gut maturation and the general health status of the offspring, as well as later on in life. Although the origin of the fetal microbiome is still not well-understood, the bacteria may originate from both the vagina, as the baby is born, as well as from the maternal oral cavity/gut, through the bloodstream. Moreover, the composition of the fetal gut microbiota varies depending on gestational age, which in turn possibly affects the regulation of the immune system at the barrier between mother and fetus, leading to differences in the ability of microorganisms to access and survive in the fetal environment. One of the most important local functions of the gut microbiota during the prenatal period is their exposure to foreign antigens which in turn contributes to immune system and tissue development, including fetal intestinal Innate Lymphoid Cells (ILCs). Additional factors that determine further infant microbiome development include whether the infant is born premature or at term, the method of delivery, maternal antibiotic use, and the composition of the mother's milk, among others. However, the latest findings highlight the fact that a more diverse infant gut microbiome at birth facilitates the proliferation of stem cells by microbial metabolites and accelerates infant development. This phenomenon confirms the unique role of microbiome. This review emphasizes the crucial perinatal and postnatal factors that may influence fetal and neonatal microbiota, and in turn gut maturation.


2020 ◽  
Vol 10 (4) ◽  
pp. 192
Author(s):  
Isabel Cornejo-Pareja ◽  
Patricia Ruiz-Limón ◽  
Ana M. Gómez-Pérez ◽  
María Molina-Vega ◽  
Isabel Moreno-Indias ◽  
...  

The interaction between genetic susceptibility, epigenetic, endogenous, and environmental factors play a key role in the initiation and progression of autoimmune thyroid diseases (AITDs). Studies have shown that gut microbiota alterations take part in the development of autoimmune diseases. We have investigated the possible relationship between gut microbiota composition and the most frequent AITDs. A total of nine Hashimoto’s thyroiditis (HT), nine Graves–Basedow’s disease (GD), and 11 otherwise healthy donors (HDs) were evaluated. 16S rRNA pyrosequencing and bioinformatics analysis by Quantitative Insights into Microbial Ecology and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) were used to analyze the gut microbiota. Beta diversity analysis showed that gut microbiota from our groups was different. We observed an increase in bacterial richness in HT and a lower evenness in GD in comparison to the HDs. GD showed a significant increase of Fusobacteriaceae, Fusobacterium and Sutterella compared to HDs and the core microbiome features showed that Prevotellaceae and Prevotella characterized this group. Victivallaceae was increased in HT and was part of their core microbiome. Streptococcaceae, Streptococcus and Rikenellaceae were greater in HT compared to GD. Core microbiome features of HT were represented by Streptococcus, Alistipes, Anaerostipes, Dorea and Haemophilus. Faecalibacterium decreased in both AITDs compared to HDs. PICRUSt analysis demonstrated enrichment in the xenobiotics degradation, metabolism, and the metabolism of cofactors and vitamins in GD patients compared to HDs. Moreover, correlation studies showed that some bacteria were widely correlated with autoimmunity parameters. A prediction model evaluated a possible relationship between predominant concrete bacteria such as an unclassified genus of Ruminococcaceae, Sutterella and Faecalibacterium in AITDs. AITD patients present altered gut microbiota compared to HDs. These alterations could be related to the immune system development in AITD patients and the loss of tolerance to self-antigens.


2018 ◽  
Vol 24 (7) ◽  
pp. 821-829 ◽  
Author(s):  
Debarati Paul ◽  
Sounik Manna ◽  
Santi M. Mandal

The gut microbiota plays significant roles in the human body during all spheres’ of life and influences innate immunity, promotes granulocyte signaling and provides resistance during pathogenic colonization of the gut; crucial for a healthy life. Antibiotics directly affect the gut microbiota that consequently alters the basic biological processes and imposes severe consequences in population falling under different age groups. In this article, we assessed the differences in microbial colonization and immune function of the intestinal tract in infants, adults, and the aged people and also examined the recent reports describing the impacts of antibiotics on infant microbiome assembly and functioning. The age old techniques have been compared to modern ones in relation to the functioning of the gut microbiome to draw inferences on significant impacts of various microbiota on human life starting from the womb, through infancy, adulthood and old age. It was observed that data is limited to different classes or origin of populace depicting variations in food habits and/or suffering from heavy metal associated diseases after continuous exposure to heavy metals/ metalloids/ biocides. Such extreme environmental factors significantly modulate the microbiota and assist in creating a 'co-resistant' gene pool that influences gut health. In the light of this finding, it is important to analyze the ‘co-resistant’ gene pool existing in gut-microbiome which supports to recoup and establish a healthy life. The hypothesis of ‘postbiotics’ is under process and their associations with antibiotic turn to be new-insight in antibiotic therapy. On one hand, postbiotics provide a great opportunity to understand the mechanism of action against pathobionts; on the other; they lead to postulation of newer pharmabiotic products and pharmacological strategies for better gut health.


Sign in / Sign up

Export Citation Format

Share Document