scholarly journals The biologically functional identification of a novel TIM3-binding peptide P26 in vitro and in vivo

2020 ◽  
Vol 86 (6) ◽  
pp. 783-792
Author(s):  
Tangwu Zhong ◽  
Chuanke Zhao ◽  
Shuntao Wang ◽  
Deshuang Tao ◽  
Shuxia Ma ◽  
...  

Abstract Purpose Recent studies have shown that TIM3 plays an important role in T-cell failure, which is closely related to the resistance to anti-programmed cell death protein 1 (PD-1) treatment. However, there have been no reports on the application of peptide blockers to TIM3. In this study, we endeavored to identify the in vitro and in vivo anti-tumor activities of a TIM3-targeting peptide screened from the phage peptide library. Methods Phage display peptide library technology, surface plasmon resonance, flow cytometry, and mixed lymphocyte reaction were utilized to screen and demonstrate the bioactivities of P26, a TIM3-targeting peptide. Meanwhile, tumor growth assay was performed to evaluate the anti-tumor effect of P26. Results In terms of affinity, we demonstrated that P26 specifically binds to TIM3 at the cellular and molecular levels, which therefore blocks the interaction between TIM3 and Galectin-9 (Gal-9) and competes with Gal-9 to bind TIM3. Additionally, P26 significantly increases T-cell activity and elevates IFN-γ and IL-2 levels in a dose-dependent manner. Notably, P26 also counteracts Gal-9-mediated T-cell suppression. More importantly, P26 can inhibit growth of MC38-hPD-L1 tumor in mice. Conclusions P26, as a novel TIM3-binding peptide, has the ideal bioactivity connecting to TIM3 and the potential prospect of application in immunotherapy as an alternative or adjuvant to existing agents.

1985 ◽  
Vol 162 (6) ◽  
pp. 1935-1953 ◽  
Author(s):  
Y A Mekori ◽  
G L Weitzman ◽  
S J Galli

It has been suggested that reserpine blocks expression of delayed hypersensitivity (DH) by depleting tissue mast cells of serotonin (5-HT), thereby preventing a T cell-dependent release of mast cell 5-HT necessary to localize and to amplify the DH response. However, reserpine blocks expression of DH in mast cell-deficient mice. We therefore decided to reevaluate the mechanism by which reserpine abrogates expression of cellular immunity, and investigated whether the drug might interfere with T cell activity in vitro or in vivo. At concentrations as low as 4 microM, reserpine profoundly suppressed baseline or antigen-augmented levels of [3H]thymidine incorporation by immune lymph node cells obtained from mice sensitized to the contactant oxazolone [I-LNC(Ox)]. This effect was observed both with I-LNC derived from normal mice and with I-LNC derived from congenitally mast cell-deficient W/Wv mice, cell preparations that lacked detectable mast cells, histamine, and 5-HT. Furthermore, treatment of I-LNC with reserpine (20 microM) for 1 h in vitro virtually abolished the ability of these cells to transfer CS to naive mice. This was not a cytolytic effect, as the viability of the I-LNC treated with reserpine was not affected, and washing of the reserpine-treated I-LNC before transfer fully restored their ability to orchestrate a CS response. The action of the drug was not mediated by an effect on mast cells, since the experiment could be performed using mast cell-deficient W/Wv mice as both donors and recipients of I-LNC. In addition, the effect was specific for the treated cells: mice that received reserpine-treated I-LNC(Ox) intravenously together with untreated I-LNC(DNFB) did not develop CS to Ox but responded normally to DNFB; and local intradermal injection of reserpine-treated I-LNC(Ox) which failed to transfer reactivity to Ox, did not interfere with the development of CS to DNFB at the same site. Finally, cotransfer experiments indicated that the effect of reserpine on the transfer of CS was not due to activation of suppressor cells. Our findings strongly suggest that whatever effects reserpine might have on immunologically nonspecific host cells, the drug's effects on sensitized T cells are sufficient to explain its ability to block cell-mediated immune responses in vivo.


1978 ◽  
Vol 148 (5) ◽  
pp. 1271-1281 ◽  
Author(s):  
C W Pierce ◽  
J A Kapp

Virgin spleen cells develop comparable primary antibody responses in vitro to syngeneic or allogeneic macrophages (Mphi) bearing the terpolymer L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT), whereas immune spleen cells primed with syngeneic or allogeneic GAT-Mphi develop secondary responses preferentially when stimulated with GAT-Mphi syngeneic to the GAT-Mphi used for priming in vivo. These restrictions are mediated by products of the I-A subregion of the H-2 complex and are operative at the level of the GAT-Mphi-immune helper T-cell interactions. To investigate why these immune spleen cells fail to develop a significant antibody response to GAT-Mphi other than those used for in vivo immunization and determine the mechanism by which the restriction is maintained, spleen cells from virgin and syngeneic or allogeneic GAT-Mphi-primed mice were co-cultured in the presence of GAT-Mphi of various haplotypes. Antibody responses to GAT developed only in the presence of GAT-Mphi syngeneic to the Mphi used for in vivo priming; responses in cultures with GAT-Mphi allogeneic to the priming Mphi, whether these Mphi were syngeneic or allogeneic with respect to the responding spleen cells, were suppressed. The suppression was mediated by GAT-specific radiosensitive T cells. Thus, development of GAT-specific suppressor T cells appears to be a natural consequence of the immune response to GAT in responder as well as nonresponder mice. The implications of stimulation of genetically restricted immune helper T cells, and antigen-specific, but unrestricted, suppressor T cells after immunization with GAT-Mphi in vivo are discussed in the context of regulatory mechanisms in antibody responses.


2021 ◽  
Author(s):  
Yingkai Wang ◽  
Yunpeng Zhao ◽  
Mingzhu Ye ◽  
Ling Wang ◽  
Tianshu Lan ◽  
...  

Abstract Background: Multiple sclerosis (MS), an inflammatory disease of the central nervous system (CNS), leads to demyelination, neuronal injury, and loss of white matter, yet still can't be cured. Exosomes are double-layered membrane vesicles of 30–200 nm in size, which can easily penetrate the blood–brain barrier (BBB). Exosomes derived from umbilical cord mesenchymal stem cells exosomes (UMSC-exos) has been shown to treat experimental autoimmune encephalomyelitis (EAE) through the action of anti-inflammatory and immunomodulatory, but its clinical translation has been hampered by their inefficacious accumulation in CNS. Therefore, we developed a TAxI-peptide-chimeric UMSC-exos termed TAxI-exos for CNS-specific accumulation and curative effect in EAE.Methods: We used an EAE model in vivo, and actived T cells and BV-2 cells models in vitro. After two immunizations to establish the EAE model, UMSC-exos, TAxI-exos or DiR labeled exosomes were administered to EAE mice EAE mice for one dose (150μg) before the peak at day 15. On day 30, the mice were sacrificed to collect spinal cords, spleens, and blood for analysis of demyelination, inflammation, microglia, the proportions of T-cell subsets, and the expression of inflammatory cytokines. In vitro, for immune mechanism analyses, PBMCs and splenocytes isolated from healthy C57BL/6 mice, were activated and incubated with 0.15mg/mL UMSC-exos or TAxI-exos. Activated BV-2 cells were used to explore the targeting-ability and polarization-regulating ability of UMSC-exos and TAxI-exos.Results: As expected, TAxI-exos had significant curative effects in EAE mice compared with UMSC-exos via an enhanced targeting-ability. The treatment alleviated inflammation, facilitated microglial cell polarization from M1 to M2, reduced the proportions of T-cell subsets, increased the expression levels of IL-4, IL-10, TGF-β, and IDO-1, and decreased the levels of IL-2, IL-6, IL-17A, IFN-γ, and TNF-α. Conclusions: TAxI-exos have a great CNS-targeting ability and suppress pathological processes in EAE mice, which have a great potential therapeutic utility for MS and other CNS diseases.


2021 ◽  
Author(s):  
Ninghai Wang ◽  
Harshal Patel ◽  
Irene Schneider ◽  
Xin Kai ◽  
Avanish K Varshney ◽  
...  

Abstract Background CD3-based bispecific T cell engagers (bsTCEs) are one of the most promising bispecific antibodies for effective cancer treatments. To elicit target-specific T cell-mediated cytotoxicity, these bsTCEs contain at least one binding unit directed against a tumor antigen and another binding unit targeting CD3 in T cell antigen receptor complex. Development of CD3-based bsTCEs, however, has been severely hampered by dose limiting toxicities due to cytokine release syndrome. To address this limitation, we developed a novel functionally trivalent TCE (t-TCE) antibody containing affinity reduced CD3 binding unit, positioned to ensure monovalent CD3 engagement, in combination with bivalent tumor antigen binding of Carcinoembryonic Antigen (CEA). Methods We modeled the variable region of anti-CD3 in the CDRs of the heavy chain and obtained CD3 binders with reduced binding affinity. Two optimized versions CEA/CD3-v1 and CEA/CD3-v2 were identified and generated in tetravalent format, characterized and compared in vitro and in vivo. Results Our lead candidate, CEA/CD3-v2, demonstrated sub-nanomolar binding and picomolar potency against a panel of CEA-expressing cancer cell lines. In addition, we detected reduced T cell cytokine release with potent cytotoxic activity. Our t-TCE CEA/CD3-v2 molecule demonstrated strong anti-tumor effect in a dose dependent manner in human PBMC xenograft model. Furthermore, combination of CEA/CD3-v2 with atezolizumab provided synergistic antitumor effect. Conclusions Because of effective tumor cell killing with various level of CEA expression and reduced cytokine release, CEA/CD3 BsTCE may greatly benefit in CEA positive cancer immunotherapy. Statement of Significance. Through optimization of CD3 binding affinity and tetravalent format with functional monovalent binding to CD3, t-TCE CEA/CD3–2 molecule not only retains high potency in vitro and in vivo, but also significantly reduces cytokine release.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A587-A587
Author(s):  
Diego Alvarado ◽  
Laura Vitale ◽  
Mike Murphy ◽  
Thomas O’Neill ◽  
Edward Natoli ◽  
...  

BackgroundAxl is a member of the TAM (Tyro3/Axl/MerTK) family of receptor tyrosine kinases and a negative regulator of innate immunity. Activation of Axl through its ligand Gas6 leads to suppression of myeloid cell activity, while its activation in tumor cells drives tumor growth, metastasis, and is associated with acquired resistance to targeted therapies, radiotherapy and chemotherapy.MethodsPurified monoclonal antibodies and variants thereof were tested in human cancer lines and primary human myeloid cells for effects on Axl signaling and immune activation, respectively.ResultsWe describe a humanized IgG1 Axl-targeting monoclonal antibody (mAb), CDX-0168, that binds to the ligand-binding domain of Axl with sub-nanomolar affinity and potently inhibits Gas6 binding. In tumor cells, CDX-0168 inhibits Gas6-dependent Axl phosphorylation and signaling and elicits tumor cell killing via ADCC in vitro and in vivo. In primary human immune cells, CDX-0168 treatment induces potent release of pro-inflammatory cytokines and chemokines from dendritic cells, monocytes and macrophages through an Fc receptor-dependent mechanism and enhanced T cell activation in mixed lymphocyte reactions. Axl inhibition may further enhance antitumor activity associated with PD-(L)1 blockade. To this end, we generated a tetravalent bispecific Axl x PD-L1 antibody combining CDX-0168 with a potent anti-PD-L1 mAb (9H9) using an IgG-scFv format. The bispecific antibody elicits greater cytokine release and T cell activation in vitro than the combination of the parental antibodies, while maintaining robust Axl and PD-L1 blockade.ConclusionsAdditional studies investigating simultaneous blockade of the Axl and PD-L1 pathways with other agents may further exploit the potential for this novel anti-cancer therapeutic approach.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 2573-2573
Author(s):  
C. G. Drake ◽  
C. Kelleher ◽  
T. Bruno ◽  
T. Harris ◽  
D. Flies ◽  
...  

2573 Background: LAG-3 is a CD4 homolog expressed on activated T cells, NK cells, tumor infiltrating lymphocytes (TIL), and plasmacytoid dendritic cells. Recently, we showed that LAG-3 was relatively overexpressed in specific T cells rendered unresponsive in vivo by the presence of cognate self-antigen. These anergic T cells display regulatory function both in vitro and in vivo, and blockade of LAG-3 with a non-depleting monoclonal antibody significantly mitigates their regulatory T cell activity. Methods: Using a novel model of prostate cancer in which a tumor-specific antigen is expressed in autochthonous tumors, we tested whether treatment with a non-depleting anti-LAG-3 antibody affected trafficking and function of tumor-specific T cells. Results: LAG-3 blockade significantly augments specific CD8 T cell trafficking to antigen-expressing tumors, but not to normal tissue. Most significantly, LAG-3 blockade functionally reversed CD8 T cell tolerance as assayed by an in vivo cytotoxic T lymphocyte (CTL) assay. Combining LAG-3 blockade with specific anti-tumor vaccination results in a dramatic increase in activated CD8 T cells in the tumor parenchyma. Conclusions: Taken together, these data support the concept that treatment with a LAG-3 blocking antibody may significantly delay disease progression in patients with cancer. We have recently generated a panel of monoclonal antibodies directed against human LAG-3; several of these antibodies significantly augment human T cell responses in vitro. No significant financial relationships to disclose.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4989-4989
Author(s):  
Zilton F.M. Vasconcelos ◽  
Julia Farache ◽  
Bruna M. Santos Grad ◽  
Tereza S. Palmeira Grad ◽  
Luis Fernando Bouzas ◽  
...  

Abstract Acute Graft versus host diseas (aGVHD) is a major complication of stem cell transplantation. The disease is mediated by T cells and a higher incidence/severity would be expected when higher numbers of T cells are inoculated. However, the incidence of aGVHD in PBST, which carries about 10 times more T cells then BMT, is not higher than the one found in later. This finding indicates a modulatory role for G-CSF over T cell activity. We had previously shown that T cells from G-CSF treated PBSC donors do not produce g-IFN nor IL-4 and that this inhibition was mediated by low density, G-CSF activated, granulocytes. In order to test if in fact G-CSF activated granulocytes could inhibit disease, we first checked if G-CSF could generate low density granulocytes, in vivo and in vitro. Indeed, either in vivo(21mg /day - 5 days) or in vitro (150 ng -12hs) with G-CSF generates low density granulocytes which co-purify with the mononuclear cells in the ficoll® gradient. Moreover, as we had shown in humans, these low density cells, inhibit the production of g-IFN by anti-CD3 activated T cells on flow cytometry studies (17%-T cells alone versus 3% T cells with granulocytes 1:1). Radiation quimaeras were set with (B6 X BALB/c)F1 as hosts reconstituted with T cell depleted C57Bl6 bone marrow, in the presence or absence of nylon wool selected spleen cells (NWSC), as T cell source, from normal or G-CSF treated mice. As previously shown by others, NWSC from G-CSF treated mice diminishes the incidence of acute disease on day 20 post-transplant, from 75 to 25%. In order to investigate if this inhibition was dependent on the activated granulocytes present in the NWSC from G-CSF treated mice, granulocytes were depleted with anti-GR1 and complement. In this case, the incidence of disease is the same or even higher (75% experiment#1 and 100% in experiment #2) than the one observed on the control group (NWSC from control mice). These results strongly suggest that activated granulocytes could indeed inhibit aGVHD. We then generated activated granulocytes in vitro, by treating spleen derived high density granulocytes with 150ng of G-CSF for 12 hs. After the incubation period, a new ficoll® gradient was performed and the low density cells were obtained. T cell contamination on the second gradient was eliminated by anti-CD4 and CD8 complement lysis. These activated granulocytes were inoculated together with NWSC from control mice in the radiation quimaeras at a 1:1 ratio. In this case 100% disease inhibition was observed when compared to the positive control group, where 75% of the animals got sick. Our data indicate that activated granulocytes are the major mediators of the G-CSF immunossupressive effects and that these cells can be used as a novel immune modulator in clinical transplantation to prevent acute GVHD.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1062-1062
Author(s):  
Jeanette Baker ◽  
Kevin Sheehan ◽  
Gina Monterola ◽  
Nancy Staines ◽  
Robert S. Negrin

Abstract Adoptive cellular therapy holds promise for improving the outcome of hematopoietic cell transplantation (HCT). At present, donor lymphocyte infusion post-HCT is efficacious for only a limited number of diseases, yet can induce significant graft versus host disease (GVHD). To improve the outcome of this approach, it would be beneficial to identify populations of T cells that retain graft versus tumor (GVT) effects with reduced propensity for GVHD. We have previously described studies of murine expanded Cytokine Induced Killer (CIK) cells which are ex vivo activated and expanded T cells that express both T and NK markers. CIK cells mediate cytotoxicity both in vivo and in vitro in a non- MHC restricted NKG2D dependent manner. Human CIK cells were expanded from PBMC from 9 healthy donors, cultured with IFNg, CD3 and IL-2 and maintained in AastromRepliCell® biochambers for 21–28 days. We aimed to determine whether cryopreservation of the CIK affects viability, cytotoxicity and phenotype. Cells were cryopreserved immediately after harvest at 10x106/ml and stored in liquid nitrogen vapor phase. CIK viability was not compromised with cryopreservation and cells thawed at 1, 2, 4, 8, 10 and 28 weeks after freezing were 96% viable (range 95%–99%). Immediately upon thawing, CIK cells showed diminished cytotoxicity against the B cell lymphoma cell lines DB and SUDHL4 with 6–10% killing at the 40:1 E:T ratio. However, thawed CIK cells regained their pre-freeze cytotoxic activity against these targets within 5 hours of being placed in reactivation medium containing IL-2 at 300 IU/ml. Reactivation of the CIK cells was extended up to 48 hours but showed no further increase in cytotoxicity beyond that attained at 5 hours; nor did increasing the IL-2 concentration to 1500 IU/ml in the reactivation medium improve CIK cell activity over the same time course. Cell viability declined during reactivation, decreasing from an average 96% upon thawing to 60% over 48 hours. Thawed CIK cells placed in reactivation medium maintained their cytotoxic activity up to 14 days in vitro. The cytotoxicity of reactivated CIK cells was assessed in vivo using SCID mice inoculated IP with 1x106 human ovarian cancer UCI-101 cells expressing the firefly luciferase gene. The mice were treated weekly with 2x107 cryopreserved and thawed human CIK cells that were re-cultured for 5 hours before injection. Following each administration of CIK cells, there was a reduction of tumor signal. Weekly treatments resulted in a better survival outcome for the mice receiving CIK cells as compared to PBS control mice. This study demonstrates that human CIK cells may be reactivated after cryopreservation and regain their cytotoxic potential. These finding have important implications for the application of these cells as adoptive cellular therapy.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3932-3932
Author(s):  
Mary Faris ◽  
Uriel M Malyankar ◽  
Qingping Zeng ◽  
Gary A Flynn ◽  
Gerold Feuer ◽  
...  

Abstract Abstract 3932 ITK (Interluekin-2 Inducible Tyrosine Kinase) is a member of the TEC family of intracellular protein tyrosine kinases. ITK is highly expressed in T cells and NK cells, with expression detected in mast cells. ITK plays a key role in several aspects of T cell biology, including T cell development, differentiation, migration, proliferation and activation. The function of ITK in immunity and allergy is well documented. T cells from ITK knock out mice show several developmental and functional defects, including defective signal transduction, altered CD4+ to CD8+ T cells ratios, reduced Th2 lineage differentiation, diminished IL4 and IL2 production and reduced T cell proliferation. Importantly ITK deficient mice fail to mount an immune response to infection and show reduced allergic asthma reactions. In contrast to its well described role in immune function, ITK's function in cancer biology is still emerging. Recent studies had reported enhanced ITK expression and activation of the ITK pathway in several types of leukemias and lymphomas. In addition, the dependence of T cell malignancies on an ITK-regulated pathway, namely the IL2/IL2R (CD25) pathway, has also been observed. Taken together, this information indicates that ITK is a therapeutic target, with applicability in leukemias and lymphomas. MannKind scientists have developed a series of selective small molecule ITK inhibitors, including the orally available tool compound described within, and evaluated their activity in enzyme, cell-based and in vivo studies. In cellular assays, the compounds showed significant inhibition of the T cell-receptor mediated activation of the ITK pathways and related downstream cytokine production. In addition to inhibiting the phosphorylation of ITK and its downstream mediator, PLCg, our tool compounds inhibited the production of IL2 and expression of CD25 in a dose dependent manner. Importantly, our compound regulated the in vitro growth of tumor T cells but not that of unrelated control cells. In vivo studies revealed that the tool compounds inhibited the growth and progression of patient derived ATL tumors in a xenograft pre-clinical model, and prolonged the survival of treated mice in a dose dependent manner, in addition to regulating cytokine production in vivo. In summary, our team has identified ITK selective compounds with demonstrated on-target and anti-tumor activity in vitro and preclinical T cell tumor models, and validated this pathway relative to T cell malignancies. This effort provides a platform for further compound optimization and evaluation for hematologic malignancies. Disclosures: Faris: MannKind Corp: Employment. Malyankar:MannKind Corp: Employment. Zeng:MannKind Corp: Employment. Kertesz:Mannkind Corporation: Employment, Equity Ownership. Vuga:MannKind Corp.: Employment. Rosario:MannKind Corp: Employment. Bot:MannKind Corp: Employment.


1976 ◽  
Vol 144 (2) ◽  
pp. 519-532 ◽  
Author(s):  
R M Zinkernagel ◽  
M B Dunlop ◽  
R V Blanden ◽  
P C Doherty ◽  
D C Shreffler

Lymphocytic choriomeningitis virus (LCMV) and ectromelia virus-specific T-cell-mediated cytotoxicity was assayed in various strain combinations using as targets peritoneal macrophages which have been shown to express Ia antigens. Virus-specific cytotoxicity was found only in H-2K- or D-region compatible combinations. I-region compatibility was not necessary nor alone sufficient for lysis. Six different I-region specificities had no obvious effect on the capacity to generate in vivo specific cytotoxicity (expressed in vitro) associated with Dd. Low LCMV-specific cytotoxic activity generated in DBA/2 mice was caused by the non-H-2 genetic background. This trait was inversely related to the infectious virus dose and recessive. Non-H-2 genes, possibly involved in controlling initial spread and multiplication of virus, seem to be, at least in the examples tested, more important in determining virus-specific cytotoxic T-cell activity in spleens than are Ir genes coded in H-2.


Sign in / Sign up

Export Citation Format

Share Document