AZO-coated plasmonic PCF nanosensor for blood constituent detection in near-infrared and visible spectrum

2022 ◽  
Vol 128 (1) ◽  
Author(s):  
Mohammad Rakibul Islam ◽  
A. N. M. Iftekher ◽  
Fateha Noor ◽  
Md Rezaul Hoque Khan ◽  
Md. Taslim Reza ◽  
...  
Author(s):  
Alexander Richards ◽  
Matthew Weschler ◽  
Michael Durller

Abstract To help solve the navigational problem, i.e., being able to successfully locate a circuit for probing or editing without destroying chip functionality, a near-infrared (NIR), near-ultraviolet (NUV), and visible spectrum camera system was developed that attaches to most focused ion beam (FIB) or scanning electron microscope vacuum chambers. This paper reviews the details of the design and implementation of the NIR/NUV camera system, as instantiated upon the FEI FIB 200, with a particular focus on its use for the visualization of buried structures, and also for non-destructive real time area of interest location and end point detection. It specifically considers the use of the micro-optical camera system for its benefit in assisting with frontside and backside circuit edit, as well as other typical FIB milling activities. The quality of the image obtained by the IR camera rivals or exceeds traditional optical based imaging microscopy techniques.


Author(s):  
Lorenzo Cotrozzi

AbstractSustainable forest management is essential to confront the detrimental impacts of diseases on forest ecosystems. This review highlights the potential of vegetation spectroscopy in improving the feasibility of assessing forest disturbances induced by diseases in a timely and cost-effective manner. The basic concepts of vegetation spectroscopy and its application in phytopathology are first outlined then the literature on the topic is discussed. Using several optical sensors from leaf to landscape-level, a number of forest diseases characterized by variable pathogenic processes have been detected, identified and quantified in many country sites worldwide. Overall, these reviewed studies have pointed out the green and red regions of the visible spectrum, the red-edge and the early near-infrared as the spectral regions most sensitive to the disease development as they are mostly related to chlorophyll changes and symptom development. Late disease conditions particularly affect the shortwave-infrared region, mostly related to water content. This review also highlights some major issues to be addressed such as the need to explore other major forest diseases and geographic areas, to further develop hyperspectral sensors for early detection and discrimination of forest disturbances, to improve devices for remote sensing, to implement long-term monitoring, and to advance algorithms for exploitation of spectral data. Achieving of these goals will enhance the capability of vegetation spectroscopy in early detection of forest stress and in managing forest diseases.


2019 ◽  
Author(s):  
Jeremy E. Solbrig ◽  
Steven D. Miller ◽  
Jianglong Zhang ◽  
Lewis Grasso ◽  
Anton Kliewer

Abstract. Detection and characterization of aerosols is inherently limited at night due to a lack of sensitivity—information typically provided by visible spectrum observations. The VIIRS Day/Night Band (DNB) onboard the Suomi-NPP satellite is a first-of-its-kind calibrated sensor capable of collecting visible/near-infrared observations during both day and night. Multiple studies have suggested that anthropogenic light emissions such as those from cities and gas flares may be useable as light sources for retrieval of atmospheric properties including cloud and aerosol optical depth. However, their use in this capacity requires proper characterization of their intrinsic variation, which represents a source of retrieval uncertainty. In this study we use 18 months of cloud-cleared VIIRS data collected over five selected geographic domains to assess the stability of anthropogenic light emissions and their response to varied satellite and lunar geometries. Timeseries are developed for each location in each domain for DNB radiance, four infrared channels, and satellite and lunar geometric variables, and spatially-resolved correlation coefficients are computed between DNB radiance and each of the other variables. This analysis finds that while many emissive light sources are too unstable to be used reliably for atmospheric retrievals, some sources exhibit a sufficient stability (relative standard deviation


ISRN Zoology ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Yuta Shiino ◽  
Kota Kitazawa

The selective advantage of empire red coloration in the shell of Laqueus rubellus (a terebratulid brachiopod) was examined in terms of prey-predator interactions. The study was based on a comparison of benthic suspension feeders living at a depth of about 130 m in Suruga Bay, Japan, with special reference to their visibility under visible and near-infrared light conditions. Almost all species exhibited red coloration under visible light, while only the shell of Laqueus was dark under infrared light, similar to rocks and bioclasts. Given the functional eyes of macropredators such as fishes and coleoids, which are specialized to detect light in the blue-to-green visible spectrum, and even the long-wavelength photoreceptors of malacosteids, Laqueus should avoid both visible and infrared detection by predators inhabiting the sublittoral bottom zone. This fact suggests that terebratulids have evolved the ability to remain essentially invisible even as the optic detection abilities of predators have improved. The present hypothesis leads to the possibility that the appearance of marine organisms is associated with the passive defensive strategy, making possible to provide a lower predation risk.


2020 ◽  
Vol 28 (4) ◽  
pp. 175-185
Author(s):  
Nathan Yergenson ◽  
D Eric Aston

Three methods of measuring coffee roast degree were compared using titratable acidity as an indicator of roast-dependent flavor change. The first roast degree method was based on prediction of the cracks with online near infrared spectroscopy and partial least squares regression, the second was based on changes in online near infrared absorbance, and the third was the common L* value from the CIELAB color space in the visible spectrum. Roasting trials utilized arabica coffee from eight origins in an air roaster, and results demonstrated the superiority of an online near infrared sensor for real-time roast degree measurement. A second dataset with constant temperature roasts showed how acidity can be controlled by changing both the roasting temperature and roast degree, finding the linear effects of roast time and roast degree on acidity.


Author(s):  
V. V. Novopashin ◽  
L. A. Skvortsov ◽  
M. I. Skvortsova

This work is devoted to comparison of optical absorption value of titanium dioxide coatings obtained by means of reactive thermal evaporation (RTE) and its activated species (ARTE), as well as to study on the dependence of the absorption coefficient of the coatings on the process parameters. Special attention is paid to the study of the influence of the films nonstoichiometry on absorption in the visible and near-infrared ranges of the spectrum. The results allow concluding that the dominant mechanism responsible for absorption in titanium dioxide films in the near-infrared range of the spectrum is the deviation from the stoichiometric composition. This deviation is caused by the presence of defects in the coating structure such as oxygen vacancies (ions Ti3+), which are seen as electron traps. As oxygen pressure and ionic current increase, the absorption of titanium dioxide films is reduced, and films with a composition closer to stoichiometric are obtained. In turn, the absorption of titanium dioxide in the visible spectrum (at wavelengths of 532 nm and 670 nm) has less to do with defects in stoichiometry, in contrast to contaminating impurities contained in the starting material, in the vacuum chamber and in the jet gas.


2018 ◽  
Author(s):  
Fabiane Sônego ◽  
Sophie Bouccara ◽  
Thomas Pons ◽  
Nicolas Lequeux ◽  
Anne Danckaert ◽  
...  

AbstractEarly detection of tumours is today a major challenge and requires sensitive imaging methodologies coupled with new efficient probes. Bioluminescence imaging has been widely used in the field of oncology and several cancer cell lines have been genetically modified to provide bioluminescence signals. However, photons that are emitted by the majority of commonly used luciferases are usually in the blue part of the visible spectrum, where tissue absorption is still very high, making deep tissue imaging non-optimal and calling for optimised optical imaging methodologies. We have previously shown that red-shifting of bioluminescence signal by Fluorescence Unbound Excitation from Luminescence (FUEL) is a mean to increase bioluminescence signal sensitivity detection in vivo. Here, we applied FUEL to tumour detection in two different subcutaneous tumour models: the auto-luminescent human embryonic kidney (HEK293) cell line and the murine B16-F10 melanoma cell line previously transfected with the plasmid Luc2. Tumour size and bioluminescence were measured over time and tumour vascularization characterized. We then locally injected near infrared emitting Quantum Dots (NIR QDs)in the tumour site and observed a red-shifting of bioluminescence signal by (FUEL) indicating that FUEL could be used to allow deeper tumour detection.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Oliver C. Rogers ◽  
Dorothy M. Johnson ◽  
Elad Firnberg

Abstract Far-red and near-infrared fluorescent proteins (FPs) enable in vivo tissue imaging with greater depth and clarity compared to FPs in the visible spectrum due to reduced light absorbance and scatter by tissues. However current tools are limited by low brightness, limited red-shifting, and a non-ideal dimeric oligomerization state. In this study we developed a monomeric variant of iRFP, termed mRhubarb713, and subsequently used a targeted and expansive multi-site mutagenesis approach to screen for variants with red-shifted spectral activity. Two monomeric variants were discovered, deemed mRhubarb719 and mRhubarb720, with red-shifted spectra and increased quantum yield compared to iRFP. These tools build on previously developed near-IR FPs and should enable improved in vivo imaging studies with a genetically encoded reporter.


Author(s):  
Mitsuhiro Ogawa ◽  
Takehiro Yamakoshi ◽  
Kenta Matsumura ◽  
Kosuke Motoi ◽  
Ken-Ichi Yamakoshi

A recently proposed optical method for a non-invasive in vivo blood glucose level (BGL) measurement named “pulse glucometry” is introduced. This method is based on near-infrared living body spectroscopy to accurately obtain blood information. The remarkable feature of the method is the measurement of both the total transmitted radiation spectra in wavelength ? (I?) and the cardiac-related pulsatile component (?I?). When ?I? is superimposed on I?, the differential optical density (?OD?), which includes only arterial blood information, is obtained, thus avoiding interference from living tissues other than arterial blood. Another feature is the ability to measure the differential optical density (?OD?) in multiple wavelengths to avoid interference from blood constituents other than the target blood chemical (glucose). To support this methodology, a very fast near-infrared spectroscopic system was developed to obtain a photoplethysmographic cardiac signal with a resolution of 8 nm over a wavelength range of 900 to 1700 nm at a 100 Hz sampling frequency. An example of an in vivo BGL measurement is shown and indicates good prediction capabilities. This method can be expanded to the measurement of other blood constituents.


Author(s):  
Samer Kais Jameel ◽  
Jafar Majidpour

Recently, numerous challenging problems have existed for transforming different image types (thermal infrared (TIR), visible spectrum, and near-infrared (NIR)). Other types of cameras may lack the ability and features of certain types of frequently-used cameras that produce different types of images. Based on camera features, different applications might emerge from observing a scenario under specific conditions (darkness, fog, night, day, and artificial light). We need to jump from one field to another to understand the scenario better. This paper proposes a fully automatic model (GVTI-AE) to manipulate the transformation into different types of vibrant, realistic images using the AutoEncoder method, which requires neither pre-nor post-processing or any user input. The experiments carried out using the GVTI-AE model showed that the perceptually realistic results produced in the widely available datasets (Tecnocampus Hand Image Database, Carl dataset, and IRIS Thermal/Visible Face Database).


Sign in / Sign up

Export Citation Format

Share Document