Exogenous Jasmonic Acid and Cytokinin Antagonistically Regulate Rice Flag Leaf Senescence by Mediating Chlorophyll Degradation, Membrane Deterioration, and Senescence-Associated Genes Expression

2015 ◽  
Vol 35 (2) ◽  
pp. 366-376 ◽  
Author(s):  
Li Liu ◽  
Haixia Li ◽  
Hanlai Zeng ◽  
Qingsheng Cai ◽  
Xie Zhou ◽  
...  
2006 ◽  
Vol 84 (2) ◽  
pp. 328-333 ◽  
Author(s):  
Shuqing Cao ◽  
Liang Su ◽  
Yuanjing Fang

Potassium (K+) deficiency induces leaf senescence, and jasmonic acid (JA) plays a role in the regulation of leaf senescence; however, there is no direct evidence that JA has a role in the induction of leaf senescence by K+ deficiency. Here, we determined that JA is involved in the induction of leaf senescence by K+ deficiency. Leaf senescence was induced by K+ deficiency, as indicated by both the induction of expression of two senescence-associated genes, SAG12 and SAG13, and a decline in chlorophyll concentration; whereas inhibitors of JA biosynthesis, aspirin and salicylate, abolished the induction of leaf senescence by K+ deficiency. The JA concentration was threefold higher in the leaves of plants with K+ deficiency than it was in the leaves of control plants. In addition, transcript levels of two JA-responsive genes, PDF1.2 and Thi2.1, were higher in the leaves of plants with K+ deficiency than in the leaves of control plants. Our studies provide evidence that K+ deficiency induces leaf senescence, at least in part, via a JA-dependent pathway.


2013 ◽  
Vol 39 (6) ◽  
pp. 1096 ◽  
Author(s):  
Dong-Qing YANG ◽  
Zhen-Lin WANG ◽  
Yan-Ping YIN ◽  
Ying-Li NI ◽  
Wei-Bing YANG ◽  
...  

Author(s):  
Xiaoping Huang ◽  
Hongyu Zhang ◽  
Qiang Wang ◽  
Rong Guo ◽  
Lingxia Wei ◽  
...  

Abstract Key message This study showed the systematic identification of long non-coding RNAs (lncRNAs) involving in flag leaf senescence of rice, providing the possible lncRNA-mRNA regulatory relationships and lncRNA-miRNA-mRNA ceRNA networks during leaf senescence. Abstract LncRNAs have been reported to play crucial roles in diverse biological processes. However, no systematic identification of lncRNAs associated with leaf senescence in plants has been studied. In this study, a genome-wide high throughput sequencing analysis was performed using rice flag leaves developing from normal to senescence. A total of 3953 lncRNAs and 38757 mRNAs were identified, of which 343 lncRNAs and 9412 mRNAs were differentially expressed. Through weighted gene co-expression network analysis (WGCNA), 22 continuously down-expressed lncRNAs targeting 812 co-expressed mRNAs and 48 continuously up-expressed lncRNAs targeting 1209 co-expressed mRNAs were considered to be significantly associated with flag leaf senescence. Gene Ontology results suggested that the senescence-associated lncRNAs targeted mRNAs involving in many biological processes, including transcription, hormone response, oxidation–reduction process and substance metabolism. Additionally, 43 senescence-associated lncRNAs were predicted to target 111 co-expressed transcription factors. Interestingly, 8 down-expressed lncRNAs and 29 up-expressed lncRNAs were found to separately target 12 and 20 well-studied senescence-associated genes (SAGs). Furthermore, analysis on the competing endogenous RNA (CeRNA) network revealed that 6 down-expressed lncRNAs possibly regulated 51 co-expressed mRNAs through 15 miRNAs, and 14 up-expressed lncRNAs possibly regulated 117 co-expressed mRNAs through 21 miRNAs. Importantly, by expression validation, a conserved miR164-NAC regulatory pathway was found to be possibly involved in leaf senescence, where lncRNA MSTRG.62092.1 may serve as a ceRNA binding with miR164a and miR164e to regulate three transcription factors. And two key lncRNAs MSTRG.31014.21 and MSTRG.31014.36 also could regulate the abscisic-acid biosynthetic gene BGIOSGA025169 (OsNCED4) and BGIOSGA016313 (NAC family) through osa-miR5809. The possible regulation networks of lncRNAs involving in leaf senescence were discussed, and several candidate lncRNAs were recommended for prior transgenic analysis. These findings will extend the understanding on the regulatory roles of lncRNAs in leaf senescence, and lay a foundation for functional research on candidate lncRNAs.


1986 ◽  
Vol 66 (3) ◽  
pp. 503-508 ◽  
Author(s):  
I. Ma. Martin del Molino ◽  
M. Ulloa ◽  
R. Martinez-Carrasco ◽  
P. Perez

2021 ◽  
Author(s):  
Yu Zhang ◽  
Yanyun Li ◽  
Yuanyuan Zhang ◽  
Zeyu Zhang ◽  
Deyu Zhang ◽  
...  

Flag leaf senescence is an important biological process that drives the remobilization of nutrients to the growing organs of rice. Leaf senescence is controlled by genetic information via gene expression and epigenetic modification, but the precise mechanism is as of yet unclear. Here, we analyzed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq) and examined its association with transcriptomes by RNA-seq during flag leaf aging in rice (Oryza sativa). We found that genome-wide H3K9 acetylation levels increased with age-dependent senescence in rice flag leaf, and there was a positive correlation between the density and breadth of H3K9ac and gene expression and transcript elongation. A set of 1,249 up-regulated, differentially expressed genes (DEGs) and 996 down-regulated DEGs showing a strong relationship between temporal changes in gene expression and gain/loss of H3K9ac was observed during rice flag leaf aging. We produced a landscape of H3K9 acetylation- modified gene expression targets that includes known senescence-associated genes, metabolism-related genes, as well as miRNA biosynthesis- related genes. Our findings reveal a complex regulatory network of metabolism- and senescence-related pathways mediated by H3K9ac and also elucidate patterns of H3K9ac-mediated regulation of gene expression during flag leaf aging in rice.


2019 ◽  
Vol 20 (2) ◽  
pp. 256 ◽  
Author(s):  
Muhammad Asad ◽  
Shamsu Zakari ◽  
Qian Zhao ◽  
Lujian Zhou ◽  
Yu Ye ◽  
...  

Abiotic stresses trigger premature leaf senescence by affecting some endogenous factors, which is an important limitation for plant growth and grain yield. Among these endogenous factors that regulate leaf senescence, abscisic acid (ABA) works as a link between the oxidase damage of cellular structure and signal molecules responding to abiotic stress during leaf senescence. Considering the importance of ABA, we collect the latest findings related to ABA biosynthesis, ABA signaling, and its inhibitory effect on chloroplast structure destruction, chlorophyll (Chl) degradation, and photosynthesis reduction. Post-translational changes in leaf senescence end with the exhaustion of nutrients, yellowing of leaves, and death of senescent tissues. In this article, we review the literature on the ABA-inducing leaf senescence mechanism in rice and Arabidopsis starting from ABA synthesis, transport, signaling receptors, and catabolism. We also predict the future outcomes of investigations related to other plants. Before changes in translation occur, ABA signaling that mediates the expression of NYC, bZIP, and WRKY transcription factors (TFs) has been investigated to explain the inducing effect on senescence-associated genes. Various factors related to calcium signaling, reactive oxygen species (ROS) production, and protein degradation are elaborated, and research gaps and potential prospects are presented. Examples of gene mutation conferring the delay or induction of leaf senescence are also described, and they may be helpful in understanding the inhibitory effect of abiotic stresses and effective measures to tolerate, minimize, or resist their inducing effect on leaf senescence.


Sign in / Sign up

Export Citation Format

Share Document