scholarly journals Chemical Potential-Induced Wall State Transitions in Plant Cell Growth

2019 ◽  
Vol 39 (2) ◽  
pp. 841-866 ◽  
Author(s):  
Mariusz A. Pietruszka

Abstract The pH/T duality of acidic pH and temperature (T) action for the growth of grass shoots was examined in order to derive the phenomenological equation of wall properties for living plants. By considering non-meristematic growth as a dynamic series of state transitions (STs) in the extending primary wall, the critical exponents were identified, which exhibit a singular behaviour at a critical temperature, critical pH and critical chemical potential (μ) in the form of four power laws: $$f_{\pi } \left( \tau \right) \propto \left| \tau \right|^{\beta - 1}$$ f π τ ∝ τ β - 1 , $$f_{\tau } (\pi ) \propto \left| \pi \right|^{1 - \alpha }$$ f τ ( π ) ∝ π 1 - α , $$g_{\mu } (\tau ) \propto \left| \tau \right|^{ - 2 - \alpha + 2\beta }$$ g μ ( τ ) ∝ τ - 2 - α + 2 β and $$g_{\tau } (\mu ) \propto \left| \mu \right|^{2 - \alpha }$$ g τ ( μ ) ∝ μ 2 - α . The indices α and β are constants, while π and τ represent a reduced pH and reduced temperature, respectively. The convexity relation α + β ≥ 2 for practical pH-based analysis and β ≡ 2 “mean-field” value in microscopic (μ) representation were derived. In this scenario, the magnitude that is decisive is the chemical potential of the H+ ions, which force subsequent STs and growth. Furthermore, observation that the growth rate is generally proportional to the product of the Euler beta functions of T and pH, allowed to determine the hidden content of the Lockhart constant Ф. It turned out that the pH-dependent time evolution equation explains either the monotonic growth or periodic extension that is usually observed—like the one detected in pollen tubes—in a unified account.

2019 ◽  
Author(s):  
Jose Julio Gutierrez Moreno ◽  
Marco Fronzi ◽  
Pierre Lovera ◽  
alan O'Riordan ◽  
Mike J Ford ◽  
...  

<p></p><p>Interfacial metal-oxide systems with ultrathin oxide layers are of high interest for their use in catalysis. In this study, we present a density functional theory (DFT) investigation of the structure of ultrathin rutile layers (one and two TiO<sub>2</sub> layers) supported on TiN and the stability of water on these interfacial structures. The rutile layers are stabilized on the TiN surface through the formation of interfacial Ti–O bonds. Charge transfer from the TiN substrate leads to the formation of reduced Ti<sup>3+</sup> cations in TiO<sub>2.</sub> The structure of the one-layer oxide slab is strongly distorted at the interface, while the thicker TiO<sub>2</sub> layer preserves the rutile structure. The energy cost for the formation of a single O vacancy in the one-layer oxide slab is only 0.5 eV with respect to the ideal interface. For the two-layer oxide slab, the introduction of several vacancies in an already non-stoichiometric system becomes progressively more favourable, which indicates the stability of the highly non-stoichiometric interfaces. Isolated water molecules dissociate when adsorbed at the TiO<sub>2</sub> layers. At higher coverages the preference is for molecular water adsorption. Our ab initio thermodynamics calculations show the fully water covered stoichiometric models as the most stable structure at typical ambient conditions. Interfacial models with multiple vacancies are most stable at low (reducing) oxygen chemical potential values. A water monolayer adsorbs dissociatively on the highly distorted 2-layer TiO<sub>1.75</sub>-TiN interface, where the Ti<sup>3+</sup> states lying above the top of the valence band contribute to a significant reduction of the energy gap compared to the stoichiometric TiO<sub>2</sub>-TiN model. Our results provide a guide for the design of novel interfacial systems containing ultrathin TiO<sub>2</sub> with potential application as photocatalytic water splitting devices.</p><p></p>


2013 ◽  
pp. 32-47
Author(s):  
S. V. Osipov

Geobotanical mapping of the territory in riverheads Bureya of 4500 sq.km is carried out and the map of a actual vegetation cover of scale 1 : 200 000 is prepared. The legend of the map is presented in the form of the text with three-level hierarchy of classes. At the heart of structure of a legend of the map such regularities of a vegetation cover, as its latitudinal zonality / altitudinal belts, situation in a relief and dynamic series lie. The largest divisions of the legend reflect, first, change of large classes of mesocombinations of vegetation at the level of belts and, secondly, distinction in a boreal - forestry belt between a vegetation cover of tops and slopes of mountains, on the one hand, and the bottoms of river valleys, with another. Divisions of the legend of the second level reflect, first, vegetation changes in the form of high-rise and barrier changes of subbelts, secondly, distinctions of a vegetation cover in different geomorphological conditions (small and average river valleys, northern slopes, etc.). Divisions of the legend of the second level correspond to dynamic series of units of the third level. Essential addition to it are block diagrams of dynamics of a vegetation cover.


Author(s):  
Phan Thành Nam ◽  
Marcin Napiórkowski

AbstractWe consider the homogeneous Bose gas on a unit torus in the mean-field regime when the interaction strength is proportional to the inverse of the particle number. In the limit when the number of particles becomes large, we derive a two-term expansion of the one-body density matrix of the ground state. The proof is based on a cubic correction to Bogoliubov’s approximation of the ground state energy and the ground state.


2004 ◽  
Vol 824 ◽  
Author(s):  
Allan T. Emrén ◽  
Anna-Maria Jacobsson

AbstractIn performance assessments, sorption of radionuclides dissolved in groundwater is mostly handled by the use of fixed Kd values. It has been well known that this approach is unsatisfying. Only during the last few years, however, tools have become available that make it possible to predict the actual Kd value in an aqueous solution that differs from the one in which the sorption properties were measured.One such approach is surface complexation (SC) that gives a detailed knowledge of the sorption properties. In SC, one tries to find what kinds of sorbed species are available on the surface and the thermodynamics for their formation from species in the bulk aqueous solution. Recently, a different approach, surface phase method (SP), has been developed. In SP, a thin layer including the surface is treated as a separate phase. In the bulk aqueous solution, the surface phase is treated as a virtual component, and from the chemical potential of this component, the sorption properties can be found.In the paper, we compare advantages and disadvantages of the two kinds of models. We also investigate the differences in predicted sorption properties of a number of radionuclides (Co, Np, Th and U). Furthermore, we discuss under which circumstances, one approach or the other is preferable.


Author(s):  
Josu Doncel ◽  
Nicolas Gast ◽  
Bruno Gaujal

We analyze a mean field game model of SIR dynamics (Susceptible, Infected, and Recovered) where players choose when to vaccinate. We show that this game admits a unique mean field equilibrium (MFE) that consists in vaccinating at a maximal rate until a given time and then not vaccinating. The vaccination strategy that minimizes the total cost has the same structure as the MFE. We prove that the vaccination period of the MFE is always smaller than the one minimizing the total cost. This implies that, to encourage optimal vaccination behavior, vaccination should always be subsidized. Finally, we provide numerical experiments to study the convergence of the equilibrium when the system is composed by a finite number of agents ( $N$ ) to the MFE. These experiments show that the convergence rate of the cost is $1/N$ and the convergence of the switching curve is monotone.


2010 ◽  
Vol 22 (03) ◽  
pp. 233-303 ◽  
Author(s):  
J.-B BRU ◽  
W. DE SIQUEIRA PEDRA

The thermodynamic impact of the Coulomb repulsion on s-wave superconductors is analyzed via a rigorous study of equilibrium and ground states of the strong coupling BCS-Hubbard Hamiltonian. We show that the one-site electron repulsion can favor superconductivity at fixed chemical potential by increasing the critical temperature and/or the Cooper pair condensate density. If the one-site repulsion is not too large, a first or a second order superconducting phase transition can appear at low temperatures. The Meißner effect is shown to be rather generic but coexistence of superconducting and ferromagnetic phases is also shown to be feasible, for instance, near half-filling and at strong repulsion. Our proof of a superconductor-Mott insulator phase transition implies a rigorous explanation of the necessity of doping insulators to create superconductors. These mathematical results are consequences of "quantum large deviation" arguments combined with an adaptation of the proof of Størmer's theorem [1] to even states on the CAR algebra.


2002 ◽  
Vol 12 (9) ◽  
pp. 77-78
Author(s):  
S. N. Artemenko

Spectral density of fluctuations of the CDW phase are calculated taking into account electric field induced by phase fluctuations. The approach based upon the fluctuation-dissipation theorem (FDT) combined with equations of linear response of the CDW conductor is used. Fluctuating electric field is found to suppress fluctuations of the phase, while fluctuations of the electric potential are sizeable. This suggests that transition from the CDW to the normal state (which is usually observed well below the mean-field transition temperature) may he provoked by fluctuations of the chemical potential, rather than by destruction of the CDW coherence between conducting chains due to phase fluctuations.


2018 ◽  
Vol 172 ◽  
pp. 02003
Author(s):  
Alejandro Ayala ◽  
J. A. Flores ◽  
L. A. Hernández ◽  
S. Hernández-Ortiz

We use the linear sigma model coupled to quarks to compute the effective potential beyond the mean field approximation, including the contribution of the ring diagrams at finite temperature and baryon density. We determine the model couplings and use them to study the phase diagram in the baryon chemical potential-temperature plane and to locate the Critical End Point.


2010 ◽  
Vol 22 (5) ◽  
pp. 1272-1311 ◽  
Author(s):  
Lars Büsing ◽  
Benjamin Schrauwen ◽  
Robert Legenstein

Reservoir computing (RC) systems are powerful models for online computations on input sequences. They consist of a memoryless readout neuron that is trained on top of a randomly connected recurrent neural network. RC systems are commonly used in two flavors: with analog or binary (spiking) neurons in the recurrent circuits. Previous work indicated a fundamental difference in the behavior of these two implementations of the RC idea. The performance of an RC system built from binary neurons seems to depend strongly on the network connectivity structure. In networks of analog neurons, such clear dependency has not been observed. In this letter, we address this apparent dichotomy by investigating the influence of the network connectivity (parameterized by the neuron in-degree) on a family of network models that interpolates between analog and binary networks. Our analyses are based on a novel estimation of the Lyapunov exponent of the network dynamics with the help of branching process theory, rank measures that estimate the kernel quality and generalization capabilities of recurrent networks, and a novel mean field predictor for computational performance. These analyses reveal that the phase transition between ordered and chaotic network behavior of binary circuits qualitatively differs from the one in analog circuits, leading to differences in the integration of information over short and long timescales. This explains the decreased computational performance observed in binary circuits that are densely connected. The mean field predictor is also used to bound the memory function of recurrent circuits of binary neurons.


Sign in / Sign up

Export Citation Format

Share Document