scholarly journals Effect of liquid elasticity on the behaviour of high-speed focused jets

2021 ◽  
Vol 62 (2) ◽  
Author(s):  
A. Franco-Gómez ◽  
H. Onuki ◽  
Y. Yokoyama ◽  
Y. Nagatsu ◽  
Y. Tagawa

AbstractWe investigate the effect of highly contrasting non-Newtonian liquid properties on the formation of liquid jets with a focused shape. By using two nozzle-free ejection techniques, mechanically impact- and laser-induced, fast jets of a highly elastic (sodium polyacrylate) and weakly elastic (xanthan-gum) diluted polymer solutions are generated. A unique high-speed effect is encountered at the jet ejection onset of the highly elastic solution. Its jet-tip speed is on average 1.4 times faster in comparison to a Newtonian (glycerin/water) and the weakly elastic liquids. We explain this effect occurring as a result of the high viscoelasticity of the sodium polyacrylate solution. Additionally, a ‘bungee jumper’ jet behaviour (Morrison and Harlen in Rheol Acta 49(6):619–632, 2010) is observed in a regime of high speed ($$10<V_j<40$$ 10 < V j < 40 m/s) and high viscosity ($$\mu >20$$ μ > 20 mPa s) not previously examined. We additionally characterise the viscoelastic non-breakup jet limit using the Bazilevskii et al. (Fluid Dyn 40(3):376–392, 2005) ejection criterion. Herein, the extensional rheological parameters are measured implementing a novel DoS-CaBER technique (Dinic et al. in Lab Chip 17(3):460–473, 2017). Our findings may influence results of inkjet printing technologies and recent nozzle-free ejection systems for ejecting liquids with non-Newtonian properties. Graphical abstract

2012 ◽  
Vol 187 ◽  
pp. 63-67
Author(s):  
Anirut Matthujak ◽  
Chaidet Kasamnimitporn ◽  
Wuttichai Sittiwong ◽  
Kulachate Pianthong

This paper describes the characteristics of supersonic non-Newtonian liquid jets injected in ambient air. The main focus is to visualize three types of time-independent non-Newtonian liquid jet and to describe their behaviors. Moreover, comparisons between their dynamic behaviors with Newtonian liquid jet are reported. The supersonic liquid jets are generated by impact driven method in a horizontal single-stage power gun. Jets have been visualized by the high speed digital video camera and shadowgraph method. Effects of different liquid types on the jet penetration distance, average jet velocity and other characteristics have been examined. From shadowgraph images, the unique dynamic behaviors of each non-Newtonian liquid jets are observed and found obviously different from that of the Newtonian liquid jet. The maximum average jet velocity of 1,802.18 m/s (Mach no. 5.30) has been obtained. The jet penetration distance and average velocity are significantly varied when the liquid types are different.


2016 ◽  
Vol 11 (1) ◽  
pp. 30-37 ◽  
Author(s):  
A.A. Rakhimov ◽  
A.T. Akhmetov

The paper presents results of hydrodynamic and rheological studies of the inverse water hydrocarbon emulsions. The success of the application of invert emulsions in the petroleum industry due, along with the high viscosity of the emulsion, greatly exceeding the viscosity of the carrier phase, the dynamic blocking effect, which consists in the fact that the rate of flow of emulsions in capillary structures and cracks falls with time to 3-4 orders, despite the permanent pressure drop. The reported study shows an increase in viscosity with increasing concentration or dispersion of emulsion. The increase in dispersion of w/o emulsion leads to an acceleration of the onset of dynamic blocking. The use of microfluidic devices, is made by soft photolithography, along with high-speed photography (10,000 frames/s), allowed us to see in the blocking condition the deformation of the microdroplets of water in inverse emulsion prepared from simple chemical compounds.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2301
Author(s):  
Man Zhang ◽  
Bin Liang ◽  
Hongjun He ◽  
Changjian Ji ◽  
Tingting Cui ◽  
...  

Appropriate pretreatment of proteins and addition of xanthan gum (XG) has the potential to improve the stability of oil-in-water (O/W) emulsions. However, the factors that regulate the enhancement and the mechanism are still not clear, which restricts the realization of improving the emulsion stability by directional design of its structure. Therefore, the effects of whey protein micro-gel particles (WPMPs) and WPMPs-XG complexes on the stability of O/W emulsion were investigated in this article to provide theoretical support. WPMPs with different structures were prepared by pretreatment (controlled high-speed shear treatment of heat-set WPC gels) at pH 3.5–8.5. The impact of initial WPC structure and XG addition on Turbiscan Indexes, mean droplet size and the peroxide values of O/W emulsions was investigated. The results indicate that WPMPs and XG can respectively inhibit droplet coalescence and gravitational separation to improve the physical stability of WPC-stabilized O/W emulsions. The pretreatment significantly enhanced the oxidative stability of WPC-stabilized O/W emulsions. The addition of XG did not necessarily enhance the oxidative stability of O/W emulsions. Whether the oxidative stability of the O/W emulsion with XG is increased or decreased depends on the interface structure of the protein-XG complex. This study has significant implications for the development of novel structures containing lipid phases that are susceptible to oxidation.


2010 ◽  
Vol 22 (4) ◽  
pp. 042101 ◽  
Author(s):  
Stephen D. Hoath ◽  
Graham D. Martin ◽  
Ian M. Hutchings

2015 ◽  
Vol 59 (2) ◽  
pp. 205011-205017 ◽  
Author(s):  
Akira Sakamoto ◽  
Manabu Numata ◽  
Yasuhiro Ogasawara ◽  
Mami Hatanaka ◽  
Yukari Motosugi ◽  
...  

2015 ◽  
Vol 642 ◽  
pp. 212-216
Author(s):  
Yi Haung ◽  
Chin Chung Wei

Ball screw is a high-precision and high performance linear drive of mechanical elements. The frictional heat of internal components what is very significant impact for platform transmission in high speed and the high axial load and causes the thermal expansion of element. In this research , the influence of different greases on ball screw is investigated in thermal rising of nut and driving torque in high speed and high axial load. A vertical motion platform was used for driving performance test. Thermal rising of nut of ball screw and the variance of transmission torque whose lubricated by high viscosity base oil grease is significant larger than the lower one. High viscosity grease is not easy to carry out the friction heat generated at ball and raceway contact area due to the bad flowing properties. It also has more serious wear occurred at contact area and high friction force, whose causes the large variance of transmission torque.


Author(s):  
Rhys J. Williams ◽  
Patrick J. Smith ◽  
Candice Majewski

AbstractHigh Speed Sintering (HSS) is a novel polymer additive manufacturing process which utilises inkjet printing of an infrared-absorbing pigment onto a heated polymer powder bed to create 2D cross-sections which can be selectively sintered using an infrared lamp. Understanding and improving the accuracy and repeatability of part manufacture by HSS are important, ongoing areas of research. In particular, the role of the ink is poorly understood; the inks typically used in HSS have not been optimised for it, and it is unknown whether they perform in a consistent manner in the process. Notably, the ambient temperature inside a HSS machine increases as a side effect of the sintering process, and the unintentional heating to which the ink is exposed is expected to cause changes in its fluid properties. However, neither the extent of ink heating during the HSS process nor the subsequent changes in its fluid properties have ever been investigated. Such investigation is important, since significant changes in ink properties at different temperatures would be expected to lead to inconsistent printing and subsequently variations in part accuracy and even the degree of sintering during a single build. For the first time, we have quantified the ink temperature rise caused by unintentional, ambient heating during the HSS process, and subsequently measured several of the ink’s fluid properties across the ink temperature range which is expected to be encountered in normal machine operation (25 to 45 ∘C). We observed only small changes in the ink’s density and surface tension due to this heating, but a significant drop (36%) in its viscosity was seen. By inspection of the ink’s Z number throughout printing, it is concluded that these changes would not be expected to change the manner in which droplets are delivered to the powder bed surface. In contrast, the viscosity decrease during printing is such that it is expected that the printed droplet sizes do change in a single build, which may indeed be a cause for concern with regard to the accuracy and repeatability of the inkjet printing used in HSS, and subsequently to the properties of the polymer parts obtained from the process.


Author(s):  
Берик Картанбаевич Саяхов ◽  
Александр Геннадьевич Дидух ◽  
Гульнара Амангельдиевна Габсаттарова ◽  
Марат Давлетович Насибулин ◽  
Жасулан Канатович Наурузбеков

На начальных участках магистрального нефтепровода Узень - Атырау - Самара формируются партии низкозастывающих бузачинских и высокозастывающих мангышлакских нефтей. По маршруту транспортировки осуществляются дополнительные подкачки нефтей с различными физико-химическими и реологическими характеристиками, что может оказывать существенное влияние на свойства перекачиваемых нефтесмесей. Цель настоящей работы - исследование физико-химических и реологических свойств бузачинской и мангышлакской нефтесмесей на маршруте поставки Узень - Атырау, а также диапазона и причин изменений характеристик бузачинской нефти (основной в компонентном составе нефтесмесей, перекачиваемых по нефтепроводу Узень - Атырау - Самара). По результатам исследований установлено, что свойства мангышлакской нефтесмеси изменяются в незначительных пределах. Для бузачинской нефтесмеси свойственна нестабильность реологических параметров, которые могут изменяться в широком диапазоне в результате путевой подкачки на различных участках нефтепровода. Колебания реологических параметров наиболее показательных проб партий бузачинской нефтесмеси рекомендуется учитывать для решения задач повышения текучести высоковязких нефтей и оптимизации технологических режимов работы трубопроводов, по которым осуществляется перекачка таких нефтей. Методами газохроматографического анализа молекулярно-массового распределения тугоплавких парафинов и поляризационной микроскопии определена температура нагрева бузачинской и мангышлакской нефтесмесей, оптимальная для ввода депрессорной присадки. At the initial sections of the Uzen - Atyrau - Samara main oil pipeline, batches of low pour point Buzachinsky and high pour point Mangyshlak oils are formed. Additional pumping of oils with different physical, chemical and rheological characteristics is carried out along the transportation route, which can have a significant effect on the properties of the pumped oil mixtures. The purpose of this study is to examine the physical, chemical and rheological properties of Buzachi and Mangyshlak oil mixtures on the Uzen - Atyrau supply route, as well as the range and causes of changes in the characteristics of Buzachinsky oil (the main oil mixture in the blend composition pumped through the Uzen - Atyrau - Samara pipeline). According to the research results, it was found that the properties of the Mangyshlak oil mixture vary within insignificant limits. The Buzachinsky oil mixture is characterized by instability of rheological parameters, which can vary in a wide range as a result of route pumping at different pipeline sections. Fluctuations of the rheological parameters of the most indicative samples of batches of the Buzachinsky oil mixture are recommended to be taken into account in order to increase the fluidity of high-viscosity oils and optimize the process modes of operation of pipelines through which such oils are pumped. Using the methods of gas chromatographic analysis of the molecular weight distribution of high-melting-point paraffins, as well as polarization microscopy, the optimal heating temperature for the introduction of a pour point depressant into the Buzachinsky and Mangyshlak oil mixtures has been determined.


2014 ◽  
Vol 217-218 ◽  
pp. 219-224 ◽  
Author(s):  
Fan Zhang ◽  
Xiao Gang Hu ◽  
Da Quan Li ◽  
You Feng He ◽  
Xiao Jing Xu ◽  
...  

The thixocasting technology is chosen to produce the turbocharger impellers as it is capable of producing castings with high precision dimension, free of oxide and shrinkage porosity defects and therefore long service life. The thixocasting turbocharger impellers have the similar mechanical property to those produced by forging and machine processes, but much less costs. In the thixocasting process, the semisolid slurry with certain solid fraction is injected into mould at a high speed. Since high viscosity and thixotropic characteristics, the semisolid slurry reveals unique flow condition and characteristics in the filling process. So, its very desirable for the die design, process optimization, and defect control to visualize the high-speed filling process of semisolid slurry by numerical simulation. In this paper, several commonly used viscosity models for semisolid slurry are analysed. The Power law cut-off model (PLCO) model is selected to simulate the filling process in the thixocasting process of the impellers of 319s alloy, compared with actual results by partial filling testing. The causes of the casting defects are also analysed, indicating that the simulation results can accurately reproduce the filling process of semisolid slurry, and PLCO model is a successful choice for simulating the filling process of semisolid slurry with high solid fraction.


AIChE Journal ◽  
2015 ◽  
Vol 61 (6) ◽  
pp. 2070-2078 ◽  
Author(s):  
Cristina Rodríguez-Rivero ◽  
Eva M. M. Del Valle ◽  
Miguel A. Galán

Sign in / Sign up

Export Citation Format

Share Document