scholarly journals DPP-4 inhibitor induces FGF21 expression via sirtuin 1 signaling and improves myocardial energy metabolism

2020 ◽  
Vol 36 (1) ◽  
pp. 136-146
Author(s):  
Nozomi Furukawa ◽  
Norimichi Koitabashi ◽  
Hiroki Matsui ◽  
Hiroaki Sunaga ◽  
Yogi Umbarawan ◽  
...  

AbstractDipeptidyl peptidase-4 (DPP-4) inhibitors are widely used incretin-based therapy for the treatment of type 2 diabetes. We investigated the cardioprotective effect of a DPP-4 inhibitor, vildagliptin (vilda), on myocardial metabolism and cardiac performance under pressure overload. Mice were treated with either vehicle or vilda, followed by transverse aortic constriction (TAC). After 3 weeks of TAC, cardiac hypertrophy and impairment of systolic function were attenuated in vilda-treated mice. Pressure–volume analysis showed that vilda treatment significantly improved left-ventricular contractile efficiency in TAC heart. Myocardial energy substrate analysis showed that vilda treatment significantly increased glucose uptake as well as fatty acid uptake. Fibroblast growth factor 21 (FGF21), a peptide involved in the regulation of energy metabolism, increased in TAC heart and was further increased by vilda treatment. FGF21 was strongly expressed in cardiac fibroblasts than in cardiomyocytes in mouse heart after TAC with vilda treatment. Vilda treatment markedly induced FGF21 expression in human cardiac fibroblasts through a sirtuin (Sirt) 1-mediated pathway, suggesting that fibroblast-mediated FGF21 expression may regulate energy metabolism and exert vilda-mediated beneficial effects in stressed heart. Vilda induced a metabolic regulator, FGF21 expression in cardiac fibroblasts via Sirt1, and increased contractile efficiency in murine pressure-overloaded heart.

2021 ◽  
Author(s):  
Patricia Cristine Borck ◽  
Sarah Rickli ◽  
Jean Franciesco Vettorazzi ◽  
Thiago Martins Batista ◽  
Antonio Carlos Boschero ◽  
...  

Disruption of biological rhythms due exposure to artificial light at night (ALAN) has been emerged as new risk factor for metabolic diseases. However, it remains largely unexplored the effects induced by exposure to ALAN on energy metabolism with concomitant misalignment in the circadian system caused by nutritional imbalance. Objective: Here we evaluate whether low-protein diet could enhance the effects induced by exposure to ALAN on the energy metabolism and consequently predispose to metabolic disorders. Male C57BL6/J mice were weaned on a normal protein (NP) or a low-protein (LP) diet and housed on 12h light/dark (L/D) cycle. After 6 weeks, mice maintained on their respective diets were subdivided into normal light/dark cycle or exposed to ALAN for 8 weeks. We observed that exposure to ALAN concomitant to LP diet disrupts the behavioral rhythms, without shifting the timing of food intake. Furthermore, exposure to ALAN lead to increased body and fat pad weights, higher levels of fast and fed glycemia and glucose intolerance independent of the diet consumed. Importantly the insulin resistance developed in mice exposed to ALAN was diet-dependent. At the molecular level, exposure to ALAN concurrent with LP diet increased the expression of Phosphoenolpyruvate carboxykinase 1 in both periods analyzed and inverted the pattern of Fibroblast growth factor 21 (Fgf21) expression in the liver. Our data suggest that dietary protein restriction modulates the effects induced by nighttime light exposure on glucose metabolism, which could be partially related with the dysregulation on hepatic Fgf21 expression.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Jaemin Byun ◽  
Dominic P Del Re ◽  
Peiyong Zhai ◽  
Akihiro Shirakabe ◽  
Junichi Sadoshima

Yes-Associated Protein (YAP), a downstream effector of the Hippo pathway, plays an important role in regulating cell proliferation and survival in mammalian cells. We have shown that cardiac-specific loss of YAP leads to increased cardiomyocyte (CM) apoptosis and impaired hypertrophy during chronic myocardial infarction in the mouse heart. However, it remains unclear whether YAP mediates hypertrophy of individual CMs under stress conditions in vivo. We hypothesized that endogenous YAP plays an essential role in mediating hypertrophy and survival of CMs in response to pressure overload (PO). Three-month-old YAP+/fl;α-MHC-Cre (YAP-cKO) and YAP+/fl (control) mice were subjected to transverse aortic constriction (TAC). Two weeks later, YAP-cKO and control mice developed similar levels of cardiac hypertrophy (left ventricular (LV) weight/tibia length: 7.27±0.38, 6.93±0.29) compared to sham (5.08±0.14, 4.07±0.33). LV CM cross sectional area was similarly increased by TAC in YAP-cKO and control mice compared to their respective shams. Induction of fetal-type genes, such as Anf and Myh7, was also similar in YAP-cKO and control mice. YAP-cKO and control mice exhibited similar baseline LV systolic function (ejection fraction (EF): 75, 76%). YAP-cKO mice had significantly decreased LV function after TAC compared to Sham-control mice (EF: 51%, 76%, p<0.05) and TAC-control mice (75%, p<0.05). LV end diastolic pressure (LVEDP, mmHg) was significantly increased (19.3 ±3.2, 9.8±1.6, p<0.05), and LV +dP/dt (mmHg/s, 7250±588, 9500±453, p<0.01) and -dP/dt (mmHg/s, 6000±433, 7781± 314, p<0.05) were significantly decreased in YAP-cKO compared to in control mice after TAC. LV end diastolic diameter (mm) was significantly greater in YAP-cKO than in control mice after TAC (3.95±0.11, 3.35±0.15, p<0.05), whereas LV pressure was similar, suggesting that LV wall stress was elevated in YAP-cKO compared to in control mice. Since cardiac hypertrophy in YAP-cKO mice is similar to that in control mice despite elevated wall stress, the lack of YAP appears to limit the extent of cardiac hypertrophy in response to increased wall stress. These data suggest that endogenous YAP plays an important role in mediating adaptive hypertrophy and protecting the heart against PO.


2015 ◽  
Vol 309 (11) ◽  
pp. H1936-H1946 ◽  
Author(s):  
Ross Wilkinson ◽  
Weihua Song ◽  
Natalia Smoktunowicz ◽  
Steven Marston

We investigated cardiac contractility in the ACTC E361G transgenic mouse model of dilated cardiomyopathy (DCM). No differences in cardiac dimensions or systolic function were observed in young mice, whereas young adult mice exhibited only mild diastolic abnormalities. Dobutamine had an inotropic and lusitropic effect on the mouse heart. In papillary muscle at 37°C, dobutamine increased relaxation rates [∼50% increase of peak rate of force decline normalized to force (dF/dtmin/F), 25% reduction of time to 90% relaxation (t90) in nontransgenic (NTG) mice], but in the ACTC E361G mouse, dF/dtmin/F was increased 20–30%, and t90 was only reduced 10% at 10 Hz. Pressure-volume measurements showed increases in maximum rate of pressure decline and decreases in time constant of left ventricular pressure decay in the ACTC E361G mouse that were 25–30% of the changes in the NTG mouse, consistent with blunting of the lusitropic response. The inotropic effect of dobutamine was also blunted in ACTC E361G mice, and the dobutamine-stimulated increase in cardiac output (CO) was reduced from 2,100 to 900 μl/min. Mice were treated with high doses of ANG II for 4 wk. The chronic stress treatment evoked systolic dysfunction in ACTC E361G mice but not in NTG. There was a significant reduction in rates of pressure increase and decrease, as well as reduced end-systolic pressure and increased volume. Ejection fraction and CO were reduced in the ACTC E361G mouse, indicating DCM. In vitro DCM-causing mutations uncouple the relationship between Ca2+ sensitivity and troponin I phosphorylation. We conclude that this leads to the observed, reduced response to β1 agonists and reduced cardiac reserve that predisposes the heart to DCM under conditions of chronic stress.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Nozomi Furukawa ◽  
Norimichi Koitabashi ◽  
Hiroki Matsui ◽  
Tomoyuki Yokoyama ◽  
Masahiko KURABAYASHI

Background: Fibroblast Growth factor 21(FGF21) is an endocrine factor, secreted mainly by the liver, that exerts metabolic actions. It has been shown that FGF21 has an anti-hypertrophic action for cardiac hypertrophy. We previously reported that murine cardiac FGF21 expression was upregulated by pressure-overload. The objective of this study was to clarify the role of cardiac fibroblast-derived FGF21 in cardiac pathological remodeling. Methods and Results: We generated fibroblast-specific/tamoxifen-inducible FGF21 knockout mice crossing by FGF21flox mice and Col1a2-CreERT mice (FB-FGF21KO). FGF21flox control mice and KO mice were induced cardiac hypertrophy by transverse aortic constriction (TAC). After 3-weeks TAC surgery, we evaluated the cardiac function by echocardiography or conductance catheter. TAC-mediated cardiac hypertrophy or impairment of systolic function were exacerbated in FB-FGF21KO mice. Conductance catheter showed that Tau, diastolic relaxation marker, was exacerbated in FB-FGF21KO mice with TAC. FB-FGF21KO heart with TAC showed significant upregulation in profibrotic genes and down-regulation in Ca2+ ATPase in comparison with control TAC heart. Cardiac Sirt1, which plays a central role in energy metabolism or oxidative stress, increased by TAC was significantly attenuated in FB-FGF21KO heart. Conclusion: Deletion of FGF21 in cardiac fibroblasts exacerbates cardiac dysfunction in response to pressure overload suggesting that cardiac fibroblasts regulates pathological remodeling via FGF21 regulation.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Haiyan Xu ◽  
Xiongwei Xie ◽  
Jiangjin Li ◽  
Yuanyuan Zhang ◽  
Changsong Xu ◽  
...  

The chronic high-dose right ventricular apical (RVA) pacing may have deleterious effects on left ventricular (LV) systolic function. We hypothesized that the expression changes of genes regulating cardiomyocyte energy metabolism and contractility were associated with deterioration of LV function in patients who underwent chronic RVA pacing. Sixty patients with complete atrioventricular block and preserved ejection fraction (EF) who underwent pacemaker implantation were randomly assigned to either RVA pacing (n=30) group or right ventricular outflow tract (RVOT) pacing (n=30) group. The mRNA levels of OPA1 and SERCA2a were significantly lower in the RVA pacing group at 1 month’s follow-up (both p<0.001). Early changes in the expression of selected genes OPA1 and SERCA2a were associated with deterioration in global longitudinal strain (GLS) that became apparent months later (p=0.002 and p=0.026, resp.) The altered expressions of genes that regulate cardiomyocyte energy metabolism and contractility measured in the peripheral blood at one month following pacemaker implantation were associated with subsequent deterioration in LV dyssynchrony and function in patients with preserved LVEF, who underwent RVA pacing.


2021 ◽  
Vol 14 (3) ◽  
pp. 263
Author(s):  
Duncan Horlock ◽  
David M. Kaye ◽  
Catherine E. Winbanks ◽  
Xiao-Ming Gao ◽  
Helen Kiriazis ◽  
...  

Cardiac fibrosis is associated with most forms of cardiovascular disease. No reliable therapies targeting cardiac fibrosis are available, thus identifying novel drugs that can resolve or prevent fibrosis is needed. Tilorone, an antiviral agent, can prevent fibrosis in a mouse model of lung disease. We investigated the anti-fibrotic effects of tilorone in human cardiac fibroblasts in vitro by performing a radioisotopic assay for [3H]-proline incorporation as a proxy for collagen synthesis. Exploratory studies in human cardiac fibroblasts treated with tilorone (10 µM) showed a significant reduction in transforming growth factor-β induced collagen synthesis compared to untreated fibroblasts. To determine if this finding could be recapitulated in vivo, mice with established pathological remodelling due to four weeks of transverse aortic constriction (TAC) were administered tilorone (50 mg/kg, i.p) or saline every third day for eight weeks. Treatment with tilorone was associated with attenuation of fibrosis (assessed by Masson’s trichrome stain), a favourable cardiac gene expression profile and no further deterioration of cardiac systolic function determined by echocardiography compared to saline treated TAC mice. These data demonstrate that tilorone has anti-fibrotic actions in human cardiac fibroblasts and the adult mouse heart, and represents a potential novel therapy to treat fibrosis associated with heart failure.


2003 ◽  
Vol 284 (2) ◽  
pp. C457-C474 ◽  
Author(s):  
Alex W. Cohen ◽  
David S. Park ◽  
Scott E. Woodman ◽  
Terrence M. Williams ◽  
Madhulika Chandra ◽  
...  

Recently, development of a caveolin-1-deficient (Cav-1 null) mouse model has allowed the detailed analysis of caveolin-1's function in the context of a whole animal. Interestingly, we now report that the hearts of Cav-1 null mice are markedly abnormal, despite the fact that caveolin-1 is not expressed in cardiac myocytes. However, caveolin-1 is abundantly expressed in the nonmyocytic cells of the heart, i.e., cardiac fibroblasts and endothelia. Quantitative imaging studies of Cav-1 null hearts demonstrate a significantly enlarged right ventricular cavity and a thickened left ventricular wall with decreased systolic function. Histological analysis reveals myocyte hypertrophy with interstitial/perivascular fibrosis. Because caveolin-1 is thought to act as a negative regulator of the p42/44 MAP kinase cascade, we performed Western blot analysis with phospho-specific antibodies that only recognize activated ERK1/2. As predicted, the p42/44 MAP kinase cascade is hyperactivated in Cav-1 null heart tissue (i.e., interstitial fibrotic lesions) and isolated cardiac fibroblasts. In addition, endothelial and inducible nitric oxide synthase levels are dramatically upregulated. Thus loss of caveolin-1 expression drives p42/44 MAP kinase activation and cardiac hypertrophy.


Sign in / Sign up

Export Citation Format

Share Document