The asymmetric impacts of ENSO modoki on boreal winter climate over the Pacific and its rim

2020 ◽  
Author(s):  
Linqiang He ◽  
Xin Hao ◽  
Tingting Han
2010 ◽  
Vol 67 (10) ◽  
pp. 3097-3112 ◽  
Author(s):  
Katrina S. Virts ◽  
John M. Wallace

Abstract Cloud fields based on the first three years of data from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission are used to investigate the relationship between cirrus within the tropical tropopause transition layer (TTL) and the Madden–Julian oscillation (MJO), the annual cycle, and El Niño–Southern Oscillation (ENSO). The TTL cirrus signature observed in association with the MJO resembles convectively induced, mixed Kelvin–Rossby wave solutions above the Pacific warm pool region. This signature is centered to the east of the peak convection and propagates eastward more rapidly than the convection; it exhibits a pronounced eastward tilt with height, suggestive of downward phase propagation and upward energy dispersion. A cirrus maximum is observed over equatorial Africa and South America when the enhanced MJO-related convection enters the western Pacific. Tropical-mean TTL cirrus is modulated by the MJO, with more than twice as much TTL cirrus fractional coverage equatorward of 10° latitude when the enhanced convection enters the Pacific than a few weeks earlier, when the convection is over the Indian Ocean. The annual cycle in cirrus clouds around the base of the TTL is equatorially asymmetric, with more cirrus observed in the summer hemisphere. Higher in the TTL, the annual cycle in cirrus clouds is more equatorially symmetric, with a maximum in the boreal winter throughout most of the tropics. The ENSO signature in TTL cirrus is marked by a zonal shift of the peak cloudiness toward the central Pacific during El Niño and toward the Maritime Continent during La Niña.


2021 ◽  
Vol 34 (1) ◽  
pp. 397-414
Author(s):  
Guosen Chen

AbstractA recent study has revealed that the Madden–Julian oscillation (MJO) during boreal winter exhibits diverse propagation patterns that consist of four archetypes: standing MJO, jumping MJO, slow eastward propagating MJO, and fast eastward propagating MJO. This study has explored the diversity of teleconnection associated with these four MJO groups. The results reveal that each MJO group corresponds to distinct global teleconnections, manifested as diverse upper-tropospheric Rossby wave train patterns. Overall, the teleconnections in the fast and slow MJO are similar to those in the canonical MJO constructed by the real-time multivariate MJO (RMM) indices, while the teleconnections in the jumping and standing MJO generally lose similarities to those in the canonical MJO. The causes of this diversity are investigated using a linearized potential vorticity equation. The various MJO tropical heating patterns in different MJO groups are the main cause of the diverse MJO teleconnections, as they induce assorted upper-level divergent flows that act as Rossby-wave sources through advecting the background potential vorticity. The variation of the Asian jet could affect the teleconnections over the Pacific jet exit region, but it plays an insignificant role in causing the diversity of global teleconnections. The numerical investigation with a linear baroclinic model shows that the teleconnections can be interpreted as linear responses to the MJO’s diabatic heating to various degrees for different MJO groups, with the fast and slow MJO having higher linear skill than the jumping and standing MJO. The results have broad implications in the MJO’s tropical–extratropical interactions and the associated impacts on global weather and climate.


2021 ◽  
pp. 1-59
Author(s):  
Niclas Rieger ◽  
Álvaro Corral ◽  
Estrella Olmedo ◽  
Antonio Turiel

AbstractA proper description of ocean-atmosphere interactions is key for a correct understanding of climate evolution. The interplay among the different variables acting over the climate is complex, often leading to correlations across long spatial distances (teleconnections). In some occasions, those teleconnections occur with quite significant temporal shifts that are fundamental for the understanding of the underlying phenomena but which are poorly captured by standard methods. Applying orthogonal decomposition such as Maximum Covariance Analysis (MCA) to geophysical data sets allows to extract common dominant patterns between two different variables, but generally suffers from (i) the non-physical orthogonal constraint as well as (ii) the consideration of simple correlations, whereby temporally offset signals are not detected. Here we propose an extension, complex rotated MCA, to address both limitations. We transform our signals using the Hilbert transform and perform the orthogonal decomposition in complex space, allowing us to correctly correlate out-of-phase signals. Subsequent Varimax rotation removes the orthogonal constraints, leading to more physically meaningful modes of geophysical variability. As an example of application, we have employed this method on sea surface temperature and continental precipitation; our method successfully captures the temporal and spatial interactions between these two variables, namely for (i) the seasonal cycle, (ii) canonical ENSO, (iii) the global warming trend, (iv) the Pacific Decadal Oscillation, (v) ENSO Modoki and finally (vi) the Atlantic Meridional Mode. The complex rotated modes of MCA provide information on the regional amplitude, and under certain conditions, the regional time lag between changes on ocean temperature and land precipitation.


2021 ◽  
Vol 51 (12) ◽  
pp. 3557-3572

AbstractThe currents and water mass properties at the Pacific entrance of the Indonesian seas are studied using measurements of three subsurface moorings deployed between the Talaud and Halmahera Islands. The moored current meter data show northeastward mean currents toward the Pacific Ocean in the upper 400 m during the nearly 2-yr mooring period, with the maximum velocity in the northern part of the channel. The mean transport between 60- and 300-m depths is estimated to be 10.1–13.2 Sv (1 Sv ≡ 106 m3 s−1) during 2016–17, when all three moorings have measurements. The variability of the along-channel velocity is dominated by low-frequency signals (periods > 150 days), with northeastward variations in boreal winter and southwestward variations in summer in the superposition of the annual and semiannual harmonics. The current variations evidence the seasonal movement of the Mindanao Current retroflection, which is supported by satellite sea level and ocean color data, showing a cyclonic intrusion into the northern Maluku Sea in boreal winter whereas a leaping path occurs north of the Talaud Islands in summer. During Apri–July, the moored CTDs near 200 m show southwestward currents carrying the salty South Pacific Tropical Water into the Maluku Sea.


2021 ◽  
Author(s):  
Jin-Sil Hong ◽  
Sang-Wook Yeh ◽  
Young-Min Yang ◽  
Young-Kwon Lim ◽  
Kyu-Myong Kim

Abstract While it is known that the Pacific Decadal Oscillation (PDO) leads the Indian Ocean Basin Mode (IOBM) with the same phase via the atmospheric bridge, we found that the relationship of PDO-IOBM during boreal winter is not stationary. Here, we investigated the PDO-IOBM relationship changes on low-frequency timescales by analyzing the observations, a long-term simulation of climate model with its large ensembles as well as the pacemaker experiments. A long-term simulation of climate model with its large ensemble simulations indicated that the non-stationary relationship of PDO-IOBM is intrinsic in a climate system and it could be at least partly due to internal climate variability. In details, we compared the PDO structures during the entire period with those during the period when the PDO-IOBM relationship was weak (i.e., 1976-2006). We found that the structures of sea surface temperature (SST) as well as its associated tropical Pacific convective forcing during the negative phase of PDO for 1976-2006 are far away from the typical structures of the negative PDO phase during the entire period, which were responsible for the weakening relationship of the PDO-IOBM in the observation. The results of the two pacemaker experiments support that a non-stationary relationship of PDO-IOBM is primarily due to the SST forcing in the Pacific.


2017 ◽  
Vol 30 (13) ◽  
pp. 4799-4818 ◽  
Author(s):  
Yanjuan Guo ◽  
Toshiaki Shinoda ◽  
Jialin Lin ◽  
Edmund K. M. Chang

This study investigates the intraseasonal variations of the Northern Hemispheric storm track associated with the Madden–Julian oscillation (MJO) during the extended boreal winter (November–April) using 36 yr (1979–2014) of reanalysis data from ERA-Interim. Two methods have been used to diagnose storm-track variations. In the first method, the storm track is quantified by the temporal-filtered variance of 250-hPa meridional wind (vv250) or mean sea level pressure (pp). The intraseasonal anomalies of vv250 composited for eight MJO phases are characterized by a zonal band of strong positive (or negative) anomalies meandering from the Pacific all the way across North America and the Atlantic into northern Europe, with weaker anomalies of opposite sign at one or both flanks. The results based on pp are consistent with those based on vv250 except for larger zonal variations, which may be induced by surface topography. In the second method, an objective cyclone-tracking scheme has been used to track the extratropical cyclones that compose the storm track. The MJO-composite anomalies of the “accumulated” cyclone activity, a quantity that includes contributions from both the cyclone frequency and cyclone mean intensity, are very similar to those based on pp. Further analysis demonstrates that major contribution comes from variations in the cyclone frequency. Further analysis suggests that the intraseasonal variations of the storm track can be primarily attributed to the variations of the mean flow that responds to the anomalous MJO convections in the tropics, with possible contribution also from the moisture variations.


2019 ◽  
Vol 15 (2) ◽  
pp. 781-793 ◽  
Author(s):  
Aurel Perşoiu ◽  
Monica Ionita ◽  
Harvey Weiss

Abstract. Causal explanations for the 4.2 ka BP event are based on the amalgamation of seasonal and annual records of climate variability that was manifest across global regions dominated by different climatic regimes. However, instrumental and paleoclimate data indicate that seasonal climate variability is not always sequential in some regions. The present study investigates the spatial manifestation of the 4.2 ka BP event during the boreal winter season in Eurasia, where climate variability is a function of the spatiotemporal dynamics of the westerly winds. We present a multi-proxy reconstruction of winter climate conditions in Europe, west Asia, and northern Africa between 4.3 and 3.8 ka. Our results show that, while winter temperatures were cold throughout the region, precipitation amounts had a heterogeneous distribution, with regionally significant low values in W Asia, SE Europe, and N Europe and local high values in the N Balkan Peninsula, the Carpathian Mountains, and E and NE Europe. Further, strong northerly winds were dominating in the Middle East and E and NE Europe. Analyzing the relationships between these climatic conditions, we hypothesize that in the extratropical Northern Hemisphere, the 4.2 ka BP event was caused by the strengthening and expansion of the Siberian High, which effectively blocked the moisture-carrying westerlies from reaching W Asia and enhanced outbreaks of cold and dry winds in that region. The behavior of the winter and summer monsoons suggests that when parts of Asia and Europe were experiencing winter droughts, SE Asia was experiencing similar summer droughts, resulting from failed and/or reduced monsoons. Thus, while in the extratropical regions of Eurasia the 4.2 ka BP event was a century-scale winter phenomenon, in the monsoon-dominated regions it may have been a feature of summer climate conditions.


2010 ◽  
Vol 138 (11) ◽  
pp. 4026-4034 ◽  
Author(s):  
David M. Straus

Abstract A method to incorporate synoptic eddies into the diagnosis of circulation regimes using cluster analysis is illustrated using boreal winter reanalyses of the National Centers of Environmental Prediction (hereafter observations) over the Pacific–North American region. The motivation is to include the configuration of the high-frequency (periods less than 10 days) transients as well as the low-frequency (periods greater than 10 days) flow explicitly into the definition of the regimes. Principle component analysis is applied to the low-frequency 200-hPa height field, and also to the low-frequency “envelope” modulations of the rms of high-frequency meridional velocity at 200 hPa. A maximum covariance analysis of the height and envelope fields, carried out using the appropriate principal components, defines three modes as explaining most of the covariance. This defines the minimum dimensionality of the space in which to apply k-means cluster analysis to the covariance coefficients. Clusters found using this method agree with results of the previous work. Significance is assessed by comparing cluster analyses with results from synthetic datasets that have the same spectral amplitudes (but random phases) of seasonal means and, separately, intraseasonal fluctuations as do the original observed time series. This procedure ensures that the synthetic series have similar autocovariance structures to the observations. Building on earlier work, the clusters obtained are newly tested to be highly significant without the need for quasi-stationary prefiltering.


2020 ◽  
Vol 33 (12) ◽  
pp. 5081-5101
Author(s):  
Jiabao Wang ◽  
Hyemi Kim ◽  
Daehyun Kim ◽  
Stephanie A. Henderson ◽  
Cristiana Stan ◽  
...  

AbstractIn an assessment of 29 global climate models (GCMs), Part I of this study identified biases in boreal winter MJO teleconnections in anomalous 500-hPa geopotential height over the Pacific–North America (PNA) region that are common to many models: an eastward shift, a longer persistence, and a larger amplitude. In Part II, we explore the relationships of the teleconnection metrics developed in Part I with several existing and newly developed MJO and basic state (the mean subtropical westerly jet) metrics. The MJO and basic state diagnostics indicate that the MJO is generally weaker and less coherent and propagates faster in models compared to observations. The mean subtropical jet also exhibits notable biases such as too strong amplitude, excessive eastward extension, or southward shift. The following relationships are found to be robust among the models: 1) models with a faster MJO propagation tend to produce weaker teleconnections; 2) models with a less coherent eastward MJO propagation tend to simulate more persistent MJO teleconnections; 3) models with a stronger westerly jet produce stronger and eastward shifted MJO teleconnections; 4) models with an eastward extended jet produce an eastward shift in MJO teleconnections; and 5) models with a southward shifted jet produce stronger MJO teleconnections. The results are supported by linear baroclinic model experiments. Our results suggest that the larger amplitude and eastward shift biases in GCM MJO teleconnections can be attributed to the biases in the westerly jet, and that the longer persistence bias is likely due to the lack of coherent eastward MJO propagation.


Sign in / Sign up

Export Citation Format

Share Document