scholarly journals Role of the nigrosome 1 absence as a biomarker in amyotrophic lateral sclerosis

Author(s):  
María Isabel Moreno-Gambín ◽  
José I. Tembl ◽  
Miguel Mazón ◽  
Antonio José Cañada-Martínez ◽  
Luis Martí-Bonmatí ◽  
...  

Abstract Introduction The absence of nigrosome 1 on brain MRI and the hyperechogenicity of substantia nigra (SNh) by transcranial sonography are two useful biomarkers in the diagnosis of parkinsonisms. We aimed to evaluate the absence of nigrosome 1 in amyotrophic lateral sclerosis (ALS) and to address its meaning. Methods 136 ALS patients were recruited, including 16 progressive muscular atrophy (PMA) and 22 primary lateral sclerosis (PLS) patients. The SNh area was measured planimetrically by standard protocols. The nigrosome 1 status was qualitatively assessed by two blind evaluators in susceptibility weight images of 3T MRI. Demographic and clinical data were collected and the C9ORF72 expansion was tested in all patients. Results Nigrosome 1 was absent in 30% of ALS patients (36% of PLS, 29% of classical ALS and 19% of PMA patients). There was no relationship between radiological and clinical laterality, nor between nigrosome 1 and SNh area. Male sex (OR = 3.63 [1.51, 9.38], p = 0.005) and a higher upper motor neuron (UMN) score (OR = 1.10 [1.02, 1.2], p = 0.022) were independently associated to nigrosome 1 absence, which also was an independent marker of poor survival (HR = 1.79 [1.3, 2.8], p = 0.013). Conclusion In ALS patients, the absence of nigrosome 1 is associated with male sex, UMN impairment and shorter survival. This suggests that constitutional factors and the degree of pyramidal involvement are related to the substantia nigra involvement in ALS. Thus, nigrosome 1 could be a marker of a multisystem degeneration, which in turn associates to poor prognosis.

2021 ◽  
Vol 11 (7) ◽  
pp. 906
Author(s):  
Nimeshan Geevasinga ◽  
Mehdi Van den Bos ◽  
Parvathi Menon ◽  
Steve Vucic

Amyotrophic lateral sclerosis (ALS) is characterised by progressive dysfunction of the upper and lower motor neurons. The disease can evolve over time from focal limb or bulbar onset to involvement of other regions. There is some clinical heterogeneity in ALS with various phenotypes of the disease described, from primary lateral sclerosis, progressive muscular atrophy and flail arm/leg phenotypes. Whilst the majority of ALS patients are sporadic in nature, recent advances have highlighted genetic forms of the disease. Given the close relationship between ALS and frontotemporal dementia, the importance of cortical dysfunction has gained prominence. Transcranial magnetic stimulation (TMS) is a noninvasive neurophysiological tool to explore the function of the motor cortex and thereby cortical excitability. In this review, we highlight the utility of TMS and explore cortical excitability in ALS diagnosis, pathogenesis and insights gained from genetic and variant forms of the disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yan-ni Zhou ◽  
You-hong Chen ◽  
Si-qi Dong ◽  
Wen-bo Yang ◽  
Ting Qian ◽  
...  

Background: Neurofilaments in cerebrospinal fluid (CSF) and in blood are considered promising biomarkers of amyotrophic lateral sclerosis (ALS) because their levels can be significantly increased in patients with ALS. However, the roles of neurofilaments, especially blood neurofilaments, in the prognosis of ALS are inconsistent. We performed a meta-analysis to explore the prognostic roles of blood neurofilaments in ALS patients.Methods: We searched all relevant studies on the relationship between blood neurofilament levels and the prognosis of ALS patients in PubMed, Embase, Scopus, and Web of Science before February 2, 2021. The quality of the included articles was assessed using the Quality in Prognosis Studies (QUIPS) scale, and R (version 4.02) was used for statistical analysis.Results: Fourteen articles were selected, covering 1,619 ALS patients. The results showed that higher blood neurofilament light chain (NfL) levels in ALS patients were associated with a higher risk of death [medium vs. low NfL level: HR = 2.43, 95% CI (1.34–4.39), p < 0.01; high vs. low NfL level: HR = 4.51, 95% CI (2.45–8.32), p < 0.01]. There was a positive correlation between blood phosphorylated neurofilament heavy chain (pNfH) levels and risk of death in ALS patients [HR = 1.87, 95% CI (1.35–2.59), p < 0.01]. The levels of NfL and pNfH in blood positively correlated with disease progression rate (DPR) of ALS patients [NfL: summary r = 0.53, 95% CI (0.45–0.60), p < 0.01; pNfH: summary r = 0.51, 95% CI (0.24–0.71), p < 0.01].Conclusion: The blood neurofilament levels can predict the prognosis of ALS patients; specifically, higher levels of blood neurofilaments are associated with a greater risk of death.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Julianne Aebischer ◽  
Nathalie Bernard-Marissal ◽  
Brigitte Pettmann ◽  
Cédric Raoul

While studies on death receptors have long been restricted to immune cells, the last decade has provided a strong body of evidence for their implication in neuronal death and hence neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). ALS is a fatal paralytic disorder that primarily affects motoneurons in the brain and spinal cord. A neuroinflammatory process, associated with astrocyte and microglial activation as well as infiltration of immune cells, accompanies motoneuron degeneration and supports the contribution of non-cell-autonomous mechanisms in the disease. Hallmarks of Fas, TNFR, LT-βR, and p75NTR signaling have been observed in both animal models and ALS patients. This review summarizes to date knowledge of the role of death receptors in ALS and the link existing between the selective loss of motoneurons and neuroinflammation. It further suggests how this recent evidence could be included in an ultimate multiapproach to treat patients.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Massimo Tortarolo ◽  
Daniele Lo Coco ◽  
Pietro Veglianese ◽  
Antonio Vallarola ◽  
Maria Teresa Giordana ◽  
...  

Amyotrophic lateral sclerosis (ALS) is considered a multifactorial, multisystem disease in which inflammation and the immune system play important roles in development and progression. The pleiotropic cytokine TNFαis one of the major players governing the inflammation in the central nervous system and peripheral districts such as the neuromuscular and immune system. Changes in TNFαlevels are reported in blood, cerebrospinal fluid, and nerve tissues of ALS patients and animal models. However, whether they play a detrimental or protective role on the disease progression is still not clear. Our group and others have recently reported opposite involvements of TNFR1 and TNFR2 in motor neuron death. TNFR2 mediates TNFαtoxic effects on these neurons presumably through the activation of MAP kinase-related pathways. On the other hand, TNFR2 regulates the function and proliferation of regulatory T cells (Treg) whose expression is inversely correlated with the disease progression rate in ALS patients. In addition, TNFαis considered a procachectic factor with a direct catabolic effect on skeletal muscles, causing wasting. We review and discuss the role of TNFαin ALS in the light of its multisystem nature.


2021 ◽  
Vol 8 (1) ◽  
pp. 25-38
Author(s):  
Marisa Cappella ◽  
Pierre-François Pradat ◽  
Giorgia Querin ◽  
Maria Grazia Biferi

Amyotrophic lateral sclerosis (ALS) is a devastating and incurable motor neuron (MN) disorder affecting both upper and lower MNs. Despite impressive advances in the understanding of the disease’s pathological mechanism, classical pharmacological clinical trials failed to provide an efficient cure for ALS over the past twenty years. Two different gene therapy approaches were recently approved for the monogenic disease Spinal muscular atrophy, characterized by degeneration of lower MNs. This milestone suggests that gene therapy-based therapeutic solutions could be effective for the treatment of ALS. This review summarizes the possible reasons for the failure of traditional clinical trials for ALS. It provides then a focus on the advent of gene therapy approaches for hereditary forms of ALS. Specifically, it describes clinical use of antisense oligonucleotides in three familial forms of ALS, caused by mutations in SOD1, C9orf72 and FUS genes, respectively.. Clinical and pre-clinical studies based on AAV-mediated gene therapy approaches for both familial and sporadic ALS cases are presented as well. Overall, this overview highlights the potential of gene therapy as a transforming technology that will have a huge impact on treatment perspective for ALS patients and on the design of future clinical trials.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaojing Gu ◽  
Yongping Chen ◽  
Qianqian Wei ◽  
Yanbing Hou ◽  
Bei Cao ◽  
...  

Background: CYLD Lysine 63 Deubiquitinase gene (CYLD) was recently identified to be a novel causative gene for frontal temporal dementia (FTD)-amyotrophic lateral sclerosis (ALS). In the current study, we aimed to (1) systematically screen the mutations of CYLD in a large cohort of Chinese ALS patients, (2) study the genotype–phenotype correlation, and (3) explore the role of CYLD in ALS via rare variants burden analysis.Methods: A total of 978 Chinese sporadic ALS (sALS) patients and 46 familial ALS (fALS) patients were sequenced with whole-exome sequencing and analyzed rare variants in CYLD with minor allele frequency <0.1%.Results: In total, seven rare missense variants in CYLD have been identified in 7 (0.72%) patients among 978 sALS patients. Two (4.3%) rare missense variants were identified among the 46 fALS cases, in which one patient was diagnosed as having comorbidity of ALS and progressive supranuclear palsy (PSP). Moreover, the burden analysis indicated no enrichment of rare variants in CYLD among patients with ALS.Conclusion: In conclusion, our study extended the genotype and phenotype of CYLD in ALS, but the pathogenicity of these variants needs to be further verified. Moreover, burden analysis argued against the role of CYLD in the pathogenesis of ALS. More studies from different ethnicities would be needed.


Author(s):  
Eugenio Distaso ◽  
Giammarco Milella ◽  
Domenico Maria Mezzapesa ◽  
Alessandro Introna ◽  
Eustachio D’Errico ◽  
...  

Abstract Background Edaravone was approved as a new treatment for amyotrophic lateral sclerosis (ALS), although there are different opinions on its effectiveness. Magnetic resonance (MRI) measures appear promising as diagnostic and prognostic indicators of disease. However, published studies on MRI using to monitor treatment efficacy in ALS are lacking. Purpose The objective of this study was to investigate changes in brain MRI measures in patients treated with edaravone. Methods Thirteen ALS patients assuming edaravone (ALS-EDA) underwent MRI at baseline (T0) and after 6 months (T6) to measure cortical thickness (CT) and fractional anisotropy (FA) of white matter (WM) tracts. MRI data of ALS-EDA were compared at T0 with those of 12 control subjects (CS), and at T6 with those of 11 ALS patients assuming only riluzole (ALS-RIL), extracted from our ALS cohort using a propensity-score-matching. A longitudinal MRI analysis was performed in ALS-EDA between T6 and T0. Results At T0, ALS-EDA showed a cortical widespread thinning in both hemispheres, particularly in the bilateral precentral gyrus, and a reduction of FA in bilateral corticospinal tracts, in comparison to CS. Thinning in bilateral precentral cortex and significant widespread reduction of FA in several WM tracts were observed in ALS-EDA at T6 compared to T0. At T6, no significant differences in MRI measures of ALS-EDA versus ALS-RIL were found. Conclusions Patients treated with edaravone showed progression of damage in the motor cortex and several WM tracts, at a six-month follow-up. Moreover, this study showed no evidence of a difference between edaravone and riluzole.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Yannick von Grabowiecki ◽  
Paula Abreu ◽  
Orphee Blanchard ◽  
Lavinia Palamiuc ◽  
Samir Benosman ◽  
...  

Mechanisms of muscle atrophy are complex and their understanding might help finding therapeutic solutions for pathologies such as amyotrophic lateral sclerosis (ALS). We meta-analyzed transcriptomic experiments of muscles of ALS patients and mouse models, uncovering a p53 deregulation as common denominator. We then characterized the induction of several p53 family members (p53, p63, p73) and a correlation between the levels of p53 family target genes and the severity of muscle atrophy in ALS patients and mice. In particular, we observed increased p63 protein levels in the fibers of atrophic muscles via denervation-dependent and -independent mechanisms. At a functional level, we demonstrated that TAp63 and p53 transactivate the promoter and increased the expression of Trim63 (MuRF1), an effector of muscle atrophy. Altogether, these results suggest a novel function for p63 as a contributor to muscular atrophic processes via the regulation of multiple genes, including the muscle atrophy gene Trim63.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mengli Wang ◽  
Zhen Liu ◽  
Juan Du ◽  
Yanchun Yuan ◽  
Bin Jiao ◽  
...  

Accumulating evidence has revealed that immunity plays an important role in amyotrophic lateral sclerosis (ALS) progression. However, the results regarding the serum levels of immunoglobulin and complement are inconsistent in patients with ALS. Although immune dysfunctions have also been reported in patients with other neurodegenerative diseases, few studies have explored whether immune dysfunction in ALS is similar to that in other neurodegenerative diseases. Therefore, we performed this study to address these gaps. In the present study, serum levels of immunoglobulin and complement were measured in 245 patients with ALS, 65 patients with multiple system atrophy (MSA), 60 patients with Parkinson's disease (PD), and 82 healthy controls (HCs). Multiple comparisons revealed that no significant differences existed between patients with ALS and other neurodegenerative diseases in immunoglobulin and complement levels. Meta-analysis based on data from our cohort and eight published articles was performed to evaluate the serum immunoglobulin and complement between patients with ALS and HCs. The pooled results showed that patients with ALS had higher C4 levels than HCs. In addition, we found that the IgG levels were lower in early-onset ALS patients than in late-onset ALS patients and HCs, and the correlations between age at onset of ALS and IgG or IgA levels were significant positive. In conclusion, our data supplement existing literature on understanding the role of peripheral immunity in ALS.


Author(s):  
Elin Roos ◽  
Sebastian K.T.S. Wärmländer ◽  
Jeremy Meyer ◽  
Sabrina B. Sholts ◽  
Jüri Jarvet ◽  
...  

AbstractAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron loss and widespread muscular atrophy. Despite intensive investigations on genetic and environmental factors, the cause of ALS remains unknown. Recent data suggest a role for metal exposures in ALS causation. In this study we present a patient who developed ALS after a traditional medical procedure in Kenya. The procedure involved insertion of a black metal powder into several subcutaneous cuts in the lower back. Four months later, general muscle weakness developed. Clinical and electrophysiological examinations detected widespread denervation consistent with ALS. The patient died from respiratory failure less than a year after the procedure. Scanning electron microscopy and X-ray diffraction analyses identified the black powder as potassium permanganate (KMnO4). A causative relationship between the systemic exposure to KMnO4 and ALS development can be suspected, especially as manganese is a well-known neurotoxicant previously found to be elevated in cerebrospinal fluid from ALS patients. Manganese neurotoxicity and exposure routes conveying this toxicity deserve further attention.


Sign in / Sign up

Export Citation Format

Share Document