scholarly journals Tuft cell integration of luminal states and interaction modules in tissues

Author(s):  
Christoph Schneider

AbstractChemosensory processes are integral to the physiology of most organisms. This function is typically performed by specialized cells that are able to detect input signals and to convert them to an output dedicated to a particular group of target cells. Tuft cells are cholinergic chemosensory epithelial cells capable of producing immunologically relevant effector molecules. They are scattered throughout endoderm-derived hollow organs and function as sensors of luminal stimuli, which has been best studied in mucosal barrier epithelia. Given their epithelial origin and broad distribution, and based on their interplay with immune pathways, tuft cells can be considered a prototypical example of how complex multicellular organisms engage innate immune mechanisms to modulate and optimize organ physiology. In this review, I provide a concise overview of tuft cells and discuss how these cells influence organ adaptation to dynamic luminal conditions.

2020 ◽  
Vol 5 (43) ◽  
pp. eaay3994 ◽  
Author(s):  
Mindy M. Miller ◽  
Preeyam S. Patel ◽  
Katherine Bao ◽  
Thomas Danhorn ◽  
Brian P. O’Connor ◽  
...  

A transitory, interleukin-25 (IL-25)–responsive, group 2 innate lymphoid cell (ILC2) subset induced during type 2 inflammation was recently identified as iILC2s. This study focuses on understanding the significance of this population in relation to tissue-resident nILC2s in the lung and intestine. RNA-sequencing and pathway analysis revealed the AP-1 superfamily transcription factor BATF (basic leucine zipper transcription factor, activating transcription factor–like) as a potential modulator of ILC2 cell fate. Infection of BATF-deficient mice with Nippostrongylus brasiliensis showed a selective defect in IL-25–mediated helminth clearance and a corresponding loss of iILC2s in the lung characterized as IL-17RBhigh, KLRG1high, BATFhigh, and Arg1low. BATF deficiency selectively impaired iILC2s because it had no impact on tissue-resident nILC2 frequency or function. Pulmonary-associated iILC2s migrated to the lung after infection, where they represented an early source of IL-4 and IL-13. Although the composition of ILC2s in the small intestine was distinct from those in the lung, their frequency and IL-13 expression remained dependent on BATF, which was also required for optimal goblet and tuft cell hyperplasia. Findings support IL-25–responsive ILC2s as early sentinels of mucosal barrier integrity.


2018 ◽  
Author(s):  
Marija S. Nadjsombati ◽  
John W. McGinty ◽  
Miranda R. Lyons-Cohen ◽  
Joshua L. Pollack ◽  
G.A. Nagana Gowda ◽  
...  

SummaryInitiation of immune responses requires innate immune sensing, but immune detection of the helminths, protists, and allergens that stimulate type 2 immunity remains poorly understood. In the small intestine, type 2 immune responses are regulated by a tuft cell-ILC2 signaling circuit. Tuft cells express components of a canonical taste transduction pathway, including the membrane channel TRPM5, but the ligands and receptors that activate tuft cells in the small intestine are unknown. Here we identify succinate as the first ligand that activates intestinal tuft cells to initiate type 2 immune responses. Using mRNA-Seq on tuft cells from different tissues, we show that all tuft cells express the intracellular taste transduction pathway, but expression of upstream receptors is tissue-specific. In the small intestine, tuft cells express the succinate receptor SUCNR1. Remarkably, providing succinate in drinking water is sufficient to induce a multifaceted type 2 immune response in the murine small intestine, involving all known components of the tuft-ILC2 circuit. The helminthNippostrongylus brasiliensissecretes succinate as a metabolite, and sensing of both succinate andN. brasiliensisrequires tuft cells and TRPM5, suggesting a novel paradigm in which type 2 immunity monitors microbial metabolism. Manipulation of succinate sensing may have therapeutic benefit in numerous intestinal diseases.


Gut ◽  
2021 ◽  
pp. gutjnl-2021-324984
Author(s):  
Tianyun Long ◽  
Nazia Abbasi ◽  
Juan E Hernandez ◽  
Yuxin Li ◽  
Ibrahim M Sayed ◽  
...  

ObjectiveTuft cells residing in the intestinal epithelium have diverse functions. In the small intestine, they provide protection against inflammation, combat against helminth and protist infections, and serve as entry portals for enteroviruses. In the colon, they had been implicated in tumourigenesis. Commitment of intestinal progenitor cells to the tuft cell lineage requires Rho GTPase Cell Division Cycle 42 (CDC42), a Rho GTPase that acts downstream of the epidermal growth factor receptor and wingless-related integration site signalling cascades, and the master transcription factor POU class 2 homeobox 3 (POU2F3). This study investigates how this pathway is regulated by the DEAD box containing RNA binding protein DDX5 in vivo.DesignWe assessed the role of DDX5 in tuft cell specification and function in control and epithelial cell-specific Ddx5 knockout mice (DDX5ΔIEC) using transcriptomic approaches.ResultsDDX5ΔIEC mice harboured a loss of intestinal tuft cell populations, modified microbial repertoire, and altered susceptibilities to ileal inflammation and colonic tumourigenesis. Mechanistically, DDX5 promotes CDC42 protein synthesis through a post-transcriptional mechanism to license tuft cell specification. Importantly, the DDX5-CDC42 axis is parallel but distinct from the known interleukin-13 circuit implicated in tuft cell hyperplasia, and both pathways augment Pou2f3 expression in secretory lineage progenitors. In mature tuft cells, DDX5 not only promotes integrin signalling and microbial responses, it also represses gene programmes involved in membrane transport and lipid metabolism.ConclusionRNA binding protein DDX5 directs tuft cell specification and function to regulate microbial repertoire and disease susceptibility in the intestine.


2021 ◽  
Author(s):  
Saltanat Ualiyeva ◽  
Evan R Lemire ◽  
Amelia Boyd ◽  
Caitlin Wong ◽  
Juying Lai ◽  
...  

Aeroallergen sensing by airway epithelial cells can trigger pathogenic immune responses leading to chronic type 2 inflammation, the hallmark of airway diseases such as asthma. Airway tuft cells are specialized chemosensory epithelial cells and the dominant source of the epithelial cytokine IL-25 in the trachea and of cysteinyl leukotrienes (CysLTs) in the naive murine nasal mucosa. The interaction of IL-25 and CysLTs and the contribution of tuft cell-derived CysLTs to the development of allergen-triggered inflammation in the airways has not been clarified. Here we show that inhalation of LTC4 in combination with a subthreshold dose of IL25 leads to dramatic synergistic induction of type 2 inflammation throughout the lungs, causing rapid eosinophilia, dendritic cell (DC) and inflammatory type 2 innate lymphoid cell (ILC2) expansion, and goblet cell metaplasia. While lung eosinophilia is dominantly mediated through the classical CysLT receptor CysLT1R, type 2 cytokines and activation of innate immune cells require signaling through both CysLT1R and CysLT2R. Tuft cell-specific deletion of the terminal enzyme requisite for CysLT production, Ltc4s, was sufficient to reduce both the innate immune response in the lung: eosinophilia, ILC2 activation and DC recruitment, and the systemic immune response in the draining lymph nodes after inhalation of the mold aeroallergen Alternaria. Our findings identify surprisingly potent synergy of CysLTs and IL-25 downstream of aeroallergen-trigged activation of airway tuft cells leading to a highly polarized type 2 immune response and further implicate airway tuft cells as powerful modulators of type 2 immunity in the lungs.


2015 ◽  
Vol 58 ◽  
pp. 115-131 ◽  
Author(s):  
Ayane Motomitsu ◽  
Shinichiro Sawa ◽  
Takashi Ishida

The ligand–receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone–receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.


2012 ◽  
Vol 39 (10) ◽  
pp. 945-951
Author(s):  
Xiao-Fang GUO ◽  
Pan CHEN ◽  
Xia-Yu LI ◽  
Xiao-Ling LI ◽  
Gui-Yuan LI

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 263
Author(s):  
Philip Rosenstock ◽  
Thomas Kaufmann

Sialic acids are sugars with a nine-carbon backbone, present on the surface of all cells in humans, including immune cells and their target cells, with various functions. Natural Killer (NK) cells are cells of the innate immune system, capable of killing virus-infected and tumor cells. Sialic acids can influence the interaction of NK cells with potential targets in several ways. Different NK cell receptors can bind sialic acids, leading to NK cell inhibition or activation. Moreover, NK cells have sialic acids on their surface, which can regulate receptor abundance and activity. This review is focused on how sialic acids on NK cells and their target cells are involved in NK cell function.


Sign in / Sign up

Export Citation Format

Share Document