The tomato IQD gene SUN24 regulates seed germination through ABA signaling pathway

Planta ◽  
2018 ◽  
Vol 248 (4) ◽  
pp. 919-931 ◽  
Author(s):  
Lulu Bi ◽  
Lin Weng ◽  
Zhuyan Jiang ◽  
Han Xiao
2020 ◽  
Vol 21 (19) ◽  
pp. 7239
Author(s):  
Ting Wang ◽  
Pan Li ◽  
Tianjiao Mu ◽  
Guangrui Dong ◽  
Chengchao Zheng ◽  
...  

UDP-glycosyltransferases (UGTs) play key roles in modulating plant development and responses to environmental challenges. Previous research reported that the Arabidopsis UDP-glucosyltransferase 74E2 (AtUGT74E2), which transfers glucose to indole-3-butyric acid (IBA), is involved in regulating plant architecture and stress responses. Here, we show novel and distinct roles of UGT74E2 in rice. We found that overexpression of AtUGT74E2 in rice could enhance seed germination. This effect was also observed in the presence of IBA and abscisic acid (ABA), as well as salt and drought stresses. Further investigation indicated that the overexpression lines had lower levels of free IBA and ABA compared to wild-type plants. Auxin signaling pathway gene expression such as for OsARF and OsGH3 genes, as well as ABA signaling pathway genes OsABI3 and OsABI5, was substantially downregulated in germinating seeds of UGT74E2 overexpression lines. Consistently, due to reduced IBA and ABA levels, the established seedlings were less tolerant to drought and salt stresses. The regulation of rice seed germination and stress tolerance could be attributed to IBA and ABA level alterations, as well as modulation of the auxin/ABA signaling pathways by UGT74E2. The distinct roles of UGT74E2 in rice implied that complex and different molecular regulation networks exist between Arabidopsis and rice.


2021 ◽  
Vol 22 (19) ◽  
pp. 10314
Author(s):  
Jinpeng Zou ◽  
Zhifang Li ◽  
Haohao Tang ◽  
Li Zhang ◽  
Jingdu Li ◽  
...  

Phytohormone ABA regulates the expression of numerous genes to significantly affect seed dormancy, seed germination and early seedling responses to biotic and abiotic stresses. However, the function of many ABA-responsive genes remains largely unknown. In order to improve the ABA-related signaling network, we conducted a large-scale ABA phenotype screening. LSH, an important transcription factor family, extensively participates in seedling development and floral organogenesis in plants, but whether its family genes are involved in the ABA signaling pathway has not been reported. Here we describe a new function of the transcription factor LSH8 in an ABA signaling pathway. In this study, we found that LSH8 was localized in the nucleus, and the expression level of LSH8 was significantly induced by exogenous ABA at the transcription level and protein level. Meanwhile, seed germination and root length measurements revealed that lsh8 mutant lines were ABA insensitive, whereas LSH8 overexpression lines showed an ABA-hypersensitive phenotype. With further TMT labeling quantitative proteomic analysis, we found that under ABA treatment, ABA-responsive proteins (ARPs) in the lsh8 mutant presented different changing patterns with those in wild-type Col4. Additionally, the number of ARPs contained in the lsh8 mutant was 397, six times the number in wild-type Col4. In addition, qPCR analysis found that under ABA treatment, LSH8 positively mediated the expression of downstream ABA-related genes of ABI3, ABI5, RD29B and RAB18. These results indicate that in Arabidopsis, LSH8 is a novel ABA regulator that could specifically change the expression pattern of APRs to positively mediate ABA responses.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jingfang Dong ◽  
Lian Zhou ◽  
Aiqing Feng ◽  
Shaohong Zhang ◽  
Hua Fu ◽  
...  

Abstract Background Although panicle blast is more destructive to yield loss than leaf blast in rice, the cloned genes that function in panicle blast resistance are still very limited and the molecular mechanisms underlying panicle blast resistance remain largely unknown. Results In the present study, we have confirmed that the three Oxalate oxidase (OXO) genes, OsOXO2, OsOXO3 and OsOXO4 from a blast-resistant cultivar BC10 function in panicle blast resistance in rice. The expression of OsOXO2, OsOXO3 and OsOXO4 were induced by panicle blast inoculation. Subcellular localization analysis revealed that the three OXO proteins are all localized in the nucleus and cytoplasm. Simultaneous silencing of OsOXO2, OsOXO3 and OsOXO4 decreased rice resistance to panicle blast, whereas the OsOXO2, OsOXO3 and OsOXO4 overexpression rice plants individually showed enhanced panicle blast resistance. More H2O2 and higher expression levels of PR genes were observed in the overexpressing plants than in the control plants, while the silencing plants exhibited less H2O2 and lower expression levels of PR genes compared to the control plants. Moreover, phytohormone treatment and the phytohormone signaling related gene expression analysis showed that panicle blast resistance mediated by the three OXO genes was associated with the activation of JA and ABA signaling pathways but suppression of SA signaling pathway. Conclusion OsOXO2, OsOXO3 and OsOXO4 positively regulate panicle blast resistance in rice. The OXO genes could modulate the accumulation of H2O2 and expression levels of PR gene in plants. Moreover, the OXO genes mediated panicle blast resistance could be regulated by ABA, SA and JA, and may be associated with the activation of JA and ABA signaling pathways but suppression of the SA signaling pathway.


2020 ◽  
Vol 103 (2) ◽  
pp. 532-546 ◽  
Author(s):  
Song Song ◽  
Guanfeng Wang ◽  
Hong Wu ◽  
Xiaowei Fan ◽  
Liwen Liang ◽  
...  

2019 ◽  
Vol 71 (1) ◽  
pp. 188-203 ◽  
Author(s):  
Hanfeng Zhang ◽  
Daoyin Liu ◽  
Bo Yang ◽  
Wu-Zhen Liu ◽  
Bangbang Mu ◽  
...  

Arabidopsis calcium-dependent protein kinase CPK6 positively regulates seed germination, seedling growth, and drought tolerance via phosphorylating ABF and ABI5 transcription factors.


PLoS ONE ◽  
2011 ◽  
Vol 6 (4) ◽  
pp. e19406 ◽  
Author(s):  
Guilan Gao ◽  
Shengchun Zhang ◽  
Chengfeng Wang ◽  
Xiang Yang ◽  
Yaqin Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document