Yellowhorn drought-induced transcription factor XsWRKY20 acts as a positive regulator in drought stress through ROS homeostasis and ABA signaling pathway

2020 ◽  
Vol 155 ◽  
pp. 187-195
Author(s):  
Chaowei Xiong ◽  
Shang Zhao ◽  
Xue Yu ◽  
Ying Sun ◽  
He Li ◽  
...  
2017 ◽  
Author(s):  
Mingxing Tu ◽  
Xianhang Wang ◽  
Yanxun Zhu ◽  
Dejun Wang ◽  
Xuechuan Zhang ◽  
...  

AbstractDrought stress limits the growth and development of grapevines, thereby reducing productivity, but the mechanisms by which grapevines respond to drought stress remain largely uncharacterized. Here, we characterized a group A bZIP gene from ‘Kyoho’ grapevine, VlbZIP30, which was shown to be induced by abscisic acid (ABA) and dehydration stress. Overexpression of VlbZIP30 in transgenic Arabidopsis enhanced dehydration tolerance during seed germination, and in the seedling and adult stages. Transcriptome analysis revealed that a major proportion of ABA- and/or drought-responsive genes are transcriptionally regulated by VlbZIP30 during ABA or mannitol treatment at the cotyledon greening stage. We identified an A. thaliana G-box motif (CACGTG) and a potential grapevine G-box motif (MCACGTGK) in the promoters of the 39 selected A. thaliana genes up-regulated in the transgenic plants and in the 35 grapevine homologs, respectively. Subsequently, using two grapevine-related databases, we found that 74% and 84% (a total of 27 genes) of the detected grapevine genes were significantly up-regulated by ABA and drought stress, respectively, suggesting that these 27 genes involve in ABA or dehydration stress and may be regulated by VlbZIP30 in grapevine. We propose that VlbZIP30 functions as a positive regulator of drought-responsive signaling in the ABA core signaling pathway.HighlightVlbZIP30 positively regulate plant drought tolerance through regulated the expression of 27 grapevine candidate genes via G-box cis-element (MCACGTGK) in ABA signaling pathway.


2010 ◽  
Vol 167 (17) ◽  
pp. 1512-1520 ◽  
Author(s):  
Md. Amir Hossain ◽  
Jung-Il Cho ◽  
Muho Han ◽  
Chul-Hyun Ahn ◽  
Jong-Seong Jeon ◽  
...  

Author(s):  
Yi-Ran Ren ◽  
Yu-Ying Yang ◽  
Qiang Zhao ◽  
Tian-En Zhang ◽  
Chu-Kun Wang ◽  
...  

2018 ◽  
Vol 98 (4-5) ◽  
pp. 289-302 ◽  
Author(s):  
Qing Liu ◽  
Shijuan Yan ◽  
Wenjie Huang ◽  
Jianyuan Yang ◽  
Jingfang Dong ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109415 ◽  
Author(s):  
Guimei Jiang ◽  
Xinqiang Jiang ◽  
Peitao Lü ◽  
Jitao Liu ◽  
Junping Gao ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Liru Cao ◽  
Xiaomin Lu ◽  
Guorui Wang ◽  
Qianjin Zhang ◽  
Xin Zhang ◽  
...  

Analyzing the transcriptome of maize leaves under drought stress and rewatering conditions revealed that transcription factors were involved in this process, among which ZmbZIP33 of the ABSCISIC ACID-INSENSITIVE 5-like protein 5 family was induced to significantly up-regulated. The functional mechanism of ZmbZIP33 in Abscisic acd (ABA) signaling pathway and its response to drought stress and rewatering has not been studied yet. The present study found that ZmbZIP33 contains a DNA-binding and dimerization domain, has transcriptional activation activity, and is highly homologous to SbABI1,SitbZIP68 and OsABA1. The expression of ZmbZIP33 is strongly up-regulated by drought, high salt, high temperature, and ABA treatments. Overexpression of ZmbZIP33 remarkably increased chlorophyll content and root length after drought stress and rewatering, and, moreover, cause an accumulation of ABA content, thereby improving drought resistance and recovery ability in Arabidopsis. However, silencing the expression of ZmbZIP33 (BMV-ZmbZIP33) remarkably decreased chlorophyll content, ABA content, superoxide dismutase and peroxidase activities, and increased stomatal opening and water loss rate compared with BMV (control). It showed that silencing ZmbZIP33 lead to reduced drought resistance and recovery ability of maize. ABA sensitivity analysis found that 0.5 and 1 μmol/L treatments severely inhibited the root development of overexpression ZmbZIP33 transgenic Arabidopsis. However, the root growth of BMV was greatly inhibited for 1 and 5μmol/L ABA treatments, but not for BMV-ZmbZIP33. Subcellular localization, yeast two-hybrid and BIFC further confirmed that the core components of ABA signaling pathways ZmPYL10 and ZmPP2C7 interacted in nucleus, ZmPP2C7 and ZmSRK2E as well as ZmSRK2E and ZmbZIP33 interacted in the plasma membrane. We also found that expression levels of ZmPYL10 and ZmSRK2E in the BMV-ZmbZIP33 mutant were lower than those of BMV, while ZmPP2C7 was the opposite under drought stress and rewatering. However, expression of ZmPYL10 and ZmSRK2E in normal maize leaves were significantly up-regulated by 3–4 folds after drought and ABA treatments for 24 h, while ZmPP2C7 was down-regulated. The NCED and ZEP encoding key enzymes in ABA biosynthesis are up-regulated in overexpression ZmbZIP33 transgenic line under drought stress and rewatering conditions, but down-regulated in BMV-ZmbZIP33 mutants. Together, these findings demonstrate that ZmbZIP33 played roles in ABA biosynthesis and regulation of drought response and rewatering in Arabidopsis and maize thought an ABA-dependent signaling pathway.


2021 ◽  
Vol 22 (19) ◽  
pp. 10314
Author(s):  
Jinpeng Zou ◽  
Zhifang Li ◽  
Haohao Tang ◽  
Li Zhang ◽  
Jingdu Li ◽  
...  

Phytohormone ABA regulates the expression of numerous genes to significantly affect seed dormancy, seed germination and early seedling responses to biotic and abiotic stresses. However, the function of many ABA-responsive genes remains largely unknown. In order to improve the ABA-related signaling network, we conducted a large-scale ABA phenotype screening. LSH, an important transcription factor family, extensively participates in seedling development and floral organogenesis in plants, but whether its family genes are involved in the ABA signaling pathway has not been reported. Here we describe a new function of the transcription factor LSH8 in an ABA signaling pathway. In this study, we found that LSH8 was localized in the nucleus, and the expression level of LSH8 was significantly induced by exogenous ABA at the transcription level and protein level. Meanwhile, seed germination and root length measurements revealed that lsh8 mutant lines were ABA insensitive, whereas LSH8 overexpression lines showed an ABA-hypersensitive phenotype. With further TMT labeling quantitative proteomic analysis, we found that under ABA treatment, ABA-responsive proteins (ARPs) in the lsh8 mutant presented different changing patterns with those in wild-type Col4. Additionally, the number of ARPs contained in the lsh8 mutant was 397, six times the number in wild-type Col4. In addition, qPCR analysis found that under ABA treatment, LSH8 positively mediated the expression of downstream ABA-related genes of ABI3, ABI5, RD29B and RAB18. These results indicate that in Arabidopsis, LSH8 is a novel ABA regulator that could specifically change the expression pattern of APRs to positively mediate ABA responses.


2001 ◽  
Vol 183 (4) ◽  
pp. 1329-1338 ◽  
Author(s):  
Samina Akbar ◽  
Tatiana A. Gaidenko ◽  
Choong Min Kang ◽  
Mary O'Reilly ◽  
Kevin M. Devine ◽  
...  

ABSTRACT Expression of the general stress regulon of Bacillus subtilis is controlled by the alternative transcription factor ςB, which is activated when cells encounter growth-limiting energy or environmental stresses. The RsbT serine-threonine kinase is required to convey environmental stress signals to ςB, and this kinase activity is magnified in vitro by the RsbR protein, a positive regulator important for full in vivo response to salt or heat stress. Previous genetic analysis suggested that RsbR function is redundant with other unidentified regulators. A search of the translated B. subtilis genome found six paralogous proteins with significant similarity to RsbR: YetI, YezB, YkoB, YojH, YqhA, and YtvA. Their possible regulatory roles were investigated using three different approaches. First, genetic analysis found that null mutations in four of the six paralogous genes have marked effects on the ςB environmental signaling pathway, either singly or in combination. The two exceptions wereyetI and yezB, adjacent genes which appear to encode a split paralog. Second, biochemical analysis found that YkoB, YojH, and YqhA are specifically phosphorylated in vitro by the RsbT environmental signaling kinase, as had been previously shown for RsbR, which is phosphorylated on two threonine residues in its C-terminal region. Both residues are conserved in the three phosphorylated paralogs but are absent in the ones that were not substrates of RsbT: YetI and YezB, each of which bears only one of the conserved residues; and YtvA, which lacks both residues and instead possesses an N-terminal PAS domain. Third, analysis in the yeast two-hybrid system suggested that all six paralogs interact with each other and with the RsbR and RsbS environmental regulators. Our data indicate that (i) RsbR, YkoB, YojH, YqhA, and YtvA function in the environmental stress signaling pathway; (ii) YtvA acts as a positive regulator; and (iii) RsbR, YkoB, YojH, and YqhA collectively act as potent negative regulators whose loss increases ςB activity more than 400-fold in unstressed cells.


Sign in / Sign up

Export Citation Format

Share Document