Immunosuppressive circuits in tumor microenvironment and their influence on cancer treatment efficacy

2018 ◽  
Vol 474 (4) ◽  
pp. 407-420 ◽  
Author(s):  
Alessandra Tuccitto ◽  
Eriomina Shahaj ◽  
Elisabetta Vergani ◽  
Simona Ferro ◽  
Veronica Huber ◽  
...  
2020 ◽  
Vol 20 (27) ◽  
pp. 2459-2471
Author(s):  
Ling-Li Wang ◽  
Bing Zhang ◽  
Ming-Hua Zheng ◽  
Yu-Zhong Xie ◽  
Chang-Jiang Wang ◽  
...  

Background: Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that play a key role in both physiological and pathological tissue degradation. MMPs have reportedly shown great potentials in the degradation of the Extracellular Matrix (ECM), have shown great potentials in targeting bioactive and imaging agents in cancer treatment. MMPs could provoke Epithelial to Mesenchymal Transition (EMT) of cancer cells and manipulate their signaling, adhesion, migration and invasion to promote cancer cell aggressiveness. Therefore, targeting and particularly inhibiting MMPs within the tumor microenvironment is an effective strategy for cancer treatment. Based on this idea, different MMP inhibitors (MMPIs) have been developed to manipulate the tumor microenvironment towards conditions appropriate for the actions of antitumor agents. Studies are ongoing to improve the selectivity and specificity of MMPIs. Structural optimization has facilitated the discovery of selective inhibitors of the MMPs. However, so far no selective inhibitor for MMP-7 has been proposed. Aims: This study aims to comprehensively review the potentials and advances in applications of MMPs particularly MMP-7 in targeted cancer treatment approaches with the main focus on targeted drug delivery. Different targeting strategies for manipulating and inhibiting MMPs for the treatment of cancer are discussed. MMPs are upregulated at all stages of expression in cancers. Different MMP subtypes have shown significant targeting applicability at the genetic, protein, and activity levels in both physiological and pathophysiological conditions in a variety of cancers. The expression of MMPs significantly increases at advanced cancer stages, which can be used for controlled release in cancers in advance stages. Methods: Moreover, this study presents the synthesis and characteristics of a new and highly selective inhibitor against MMP-7 and discusses its applications in targeted drug delivery systems for therapeutics and diagnostics modalities. Results: Our findings showed that the structure of the inhibitor P3’ side chains play the crucial role in developing an optimized MMP-7 inhibitor with high selectivity and significant degradation activities against ECM. Conclusion: Optimized NDC can serve as a highly potent and selective inhibitor against MMP-7 following screening and optimization of the P3’ side chains, with a Ki of 38.6 nM and an inhibitory selectivity of 575 of MMP-7 over MMP-1.


Author(s):  
Gerwin Heller

SummaryImmunotherapy is one of the major breakthroughs in cancer treatment. However, many patients do not benefit from this type of therapy. Thus, there is an urgent need for a strategy to predict treatment efficacy before start of therapy. The role of certain genetic and epigenetic factors as potential predictive markers for response to immunotherapy is discussed in this short review.


Author(s):  
Martin Perez-Santos ◽  
Maricruz Anaya-Ruiz ◽  
Gabriela Sanchez-Esgua ◽  
Luis Villafaña-Diaz ◽  
Diana Barron-Villaverde

PD-L1 and ICOS are immune control points in cancer and their presence in cancer tends to have a poor prognosis. WO2019122882 patent describes a bispecific antibody that targets PDL-1/ICOS with the potential application of cancer treatment. WO2019122882 patent describes a bispecific antibody with antitumor efficacy in CT26 model through of the depletion of TReg cells and improved ratio of CD8+ T cells: TReg in tumor microenvironment. The anti-PDL-1/ICOS antibody is new; however, only preclinical assays are shown using colon carcinoma model. So far, there are no reports of clinical trials to evaluate the safety, toxicity and efficacy, but it will be of great interest to analyze in the future if this antibody surpasses the action of the combinatorial therapy in cancer.


2021 ◽  
Author(s):  
Congcong Liu ◽  
Chengcheng Li ◽  
Sen Jiang ◽  
Cheng Zhang ◽  
Yang Tian

Tumor-microenvironment (TME) responding nanostructures are attractive for drug delivery in clinical cancer treatment. The coordination polymer Fe–Gallic Acid (Fe-GA) is one of the promising drug carriers due to its pH-responding,...


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2617
Author(s):  
Vitor Rodrigues da Costa ◽  
Rodrigo Pinheiro Araldi ◽  
Hugo Vigerelli ◽  
Fernanda D’Ámelio ◽  
Thais Biude Mendes ◽  
...  

Cancer is one of the most important health problems and the second leading cause of death worldwide. Despite the advances in oncology, cancer heterogeneity remains challenging to therapeutics. This is because the exosome-mediated crosstalk between cancer and non-cancer cells within the tumor microenvironment (TME) contributes to the acquisition of all hallmarks of cancer and leads to the formation of cancer stem cells (CSCs), which exhibit resistance to a range of anticancer drugs. Thus, this review aims to summarize the role of TME-derived exosomes in cancer biology and explore the clinical potential of mesenchymal stem-cell-derived exosomes as a cancer treatment, discussing future prospects of cell-free therapy for cancer treatment and challenges to be overcome.


2020 ◽  
Vol 21 (22) ◽  
pp. 8689
Author(s):  
Alessandra Leong ◽  
Minah Kim

Despite significant advances made in cancer treatment, the development of therapeutic resistance to anticancer drugs represents a major clinical problem that limits treatment efficacy for cancer patients. Herein, we focus on the response and resistance to current antiangiogenic drugs and immunotherapies and describe potential strategies for improved treatment outcomes. Antiangiogenic treatments that mainly target vascular endothelial growth factor (VEGF) signaling have shown efficacy in many types of cancer. However, drug resistance, characterized by disease recurrence, has limited therapeutic success and thus increased our urgency to better understand the mechanism of resistance to inhibitors of VEGF signaling. Moreover, cancer immunotherapies including immune checkpoint inhibitors (ICIs), which stimulate antitumor immunity, have also demonstrated a remarkable clinical benefit in the treatment of many aggressive malignancies. Nevertheless, the emergence of resistance to immunotherapies associated with an immunosuppressive tumor microenvironment has restricted therapeutic response, necessitating the development of better therapeutic strategies to increase treatment efficacy in patients. Angiopoietin-2 (ANG2), which binds to the receptor tyrosine kinase TIE2 in endothelial cells, is a cooperative driver of angiogenesis and vascular destabilization along with VEGF. It has been suggested in multiple preclinical studies that ANG2-mediated vascular changes contribute to the development and persistence of resistance to anti-VEGF therapy. Further, emerging evidence suggests a fundamental link between vascular abnormalities and tumor immune evasion, supporting the rationale for combination strategies of immunotherapy with antiangiogenic drugs. In this review, we discuss the recent mechanistic and clinical advances in targeting angiopoietin signaling, focusing on ANG2 inhibition, to enhance therapeutic efficacy of antiangiogenic and ICI therapies. In short, we propose that a better mechanistic understanding of ANG2-mediated vascular changes will provide insight into the significance of ANG2 in treatment response and resistance to current antiangiogenic and ICI therapies. These advances will ultimately improve therapeutic modalities for cancer treatment.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Uma Kizhuveetil ◽  
Sonal Omer ◽  
D. Karunagaran ◽  
G. K. Suraishkumar

2015 ◽  
Vol 33 (15_suppl) ◽  
pp. 6029-6029
Author(s):  
Kanaka Govind Babu ◽  
Biswanath Majumder ◽  
Saravanan Thiyagarajan ◽  
Baraneedharan Ulaganathan ◽  
Rajagopal Surindran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document